Движение тела по наклонной плоскости вверх. Наклонная плоскость. Описание лабораторной установки

В. М. Зражевский

ЛАБОРАТОРНАЯ РАБОТА №

СКАТЫВАНИЕ ТВЕРДОГО ТЕЛА С НАКЛОННОЙ ПЛОСКОСТИ

Цель работы: Проверка закона сохранения механической энергии при скатывании твердого тела с наклонной плоскости.

Оборудование: наклонная плоскость, электронный секундомер, цилиндры разной массы.

Теоретические сведения

Пусть цилиндр радиуса R и массой m скатывается с наклонной плоскости, образующей угол α с горизонтом (рис. 1). На цилиндр действуют три силы: сила тяжести P = mg , сила нормального давления плоскости на цилиндр N и сила трения цилиндра о плоскость F тр. , лежащая в этой плоскости.

Цилиндр участвует одновременно в двух видах движения: поступательном движении центра масс O и вращательном движении относительно оси, проходящей через центр масс.

Так как цилиндр во время движения остается на плоскости, то ускорение центра масс в направлении нормали к наклонной плоскости равно нулю, следовательно

P ∙cosα − N = 0. (1)

Уравнение динамики поступательного движения вдоль наклонной плоскости определяется силой трения F тр. и составляющей силы тяжести вдоль наклонной плоскости mg ∙sinα:

ma = mg ∙sinα − F тр. , (2)

где a – ускорение центра тяжести цилиндра вдоль наклонной плоскости.

Уравнение динамики вращательного движения относительно оси, проходящей через центр масс имеет вид

I ε = F тр. R , (3)

где I – момент инерции, ε – угловое ускорение. Момент силы тяжести и относительно этой оси равен нулю.

Уравнения (2) и (3) справедливы всегда, вне зависимости от того, движется цилиндр по плоскости со скольжением или без скольжения. Но из этих уравнений нельзя определить три неизвестные величины: F тр. , a и ε, необходимо еще одно дополнительное условие.

Если сила трения имеет достаточную величину, то качение цилиндра по наклонной происходит без скольжения. Тогда точки на окружности цилиндра должны проходить ту же длину пути, что и центр масс цилиндра. В этом случае линейное ускорение a и угловое ускорение ε связаны соотношением

a = R ε. (4)

Из уравнения (4) ε = a /R . После подстановки в (3) получаем

. (5)

Заменив в (2) F тр. на (5), получаем

. (6)

Из последнего соотношения определяем линейное ускорение

. (7)

Из уравнений (5) и (7) можно вычислить силу трения:

. (8)

Сила трения зависит от угла наклона α, силы тяжести P = mg и от отношения I /mR 2 . Без силы трения качения не будет.

При качении без скольжения играет роль сила трения покоя. Сила трения при качении, как и сила трения покоя, имеет максимальное значение, равное μN . Тогда условия для качения без скольжения будут выполняться в том случае, если

F тр. ≤ μN . (9)

Учитывая (1) и (8), получим

, (10)

или, окончательно

. (11)

В общем случае момент инерции однородных симметричных тел вращения относительно оси, проходящей через центр масс, можно записать как

I = kmR 2 , (12)

где k = 0,5 для сплошного цилиндра (диска); k = 1 для полого тонкостенного цилиндра (обруча); k = 0,4 для сплошного шара.

После подстановки (12) в (11) получаем окончательный критерий скатывания твердого тела с наклонной плоскости без проскальзывания:

. (13)

Поскольку при качении твердого тела по твердой поверхности сила трения качения мала, то полная механическая энергия скатывающегося тела постоянна. В начальный момент времени, когда тело находится в верхней точке наклонной плоскости на высоте h , его полная механическая энергия равна потенциальной:

W п = mgh = mgs ∙sinα, (14)

где s – путь, пройденный центром масс.

Кинетическая энергия катящегося тела складывается из кинетической энергии поступательного движения центра масс со скоростью υ и вращательного движения со скоростью ω относительно оси, проходящей через центр масс:

. (15)

При качении без скольжения линейная и угловая скорости связаны соотношением

υ = R ω. (16)

Преобразуем выражение для кинетической энергии (15), подставив в него (16) и (12):

Движение по наклонной плоскости является равноускоренным:

. (18)

Преобразуем (18) с учетом (4):

. (19)

Решая совместно (17) и (19), получим окончательное выражение для кинетической энергии тела, катящегося по наклонной плоскости:

. (20)

Описание установки и метода измерений

Исследовать качение тела по наклонной плоскости можно с помощью узла «плоскость» и электронного секундомера СЭ1, входящих в состав модульного учебного комплекса МУК-М2.

У
становка представляет собой наклонную плоскость 1, которую с помощью винта 2 можно устанавливать под разными углами α к горизонту (рис. 2). Угол α измеряется с помощью шкалы 3. На плоскость может быть помещен цилиндр 4 массой m . Предусмотрено использование двух роликов разной массы. Ролики закрепляются в верхней точке наклонной плоскости с помощью электромагнита 5, управление которым осуществляется с помощью

электронного секундомера СЭ1. Пройденное цилиндром расстояние измеряется линейкой 6, закрепленной вдоль плоскости. Время скатывания цилиндра измеряется автоматически с помощью датчика 7, выключающего секундомер в момент касания роликом финишной точки.

Порядок выполнения работы

1. Ослабив винт 2 (рис. 2), установите плоскость под некоторым углом α к горизонту. Поместите ролик 4 на наклонную плоскость.

2. Переключите тумблер управления электромагнитами механического блока в положение «плоскость».

3. Переведите секундомер СЭ1 в положение режим 1.

4. Нажмите кнопку «Пуск» секундомера. Измерьте время скатывания.

5. Повторите опыт пять раз. Результаты измерений запишите в табл. 1.

6. Вычислите значение механической энергии до, и после скатывания. Сделайте вывод.

7. Повторите п. 1-6 для других углов наклона плоскости.

Таблица 1

t i , c

(t i <t >) 2

пути s , м

Угол наклона

ролика, кг

W п, Дж

W к, Дж

t (a,n )

<t >

å(t i <t >) 2

Δs , м

Δm , кг

8. Повторите опыт п. 1-7 для второго ролика. Результаты запишите в табл. 2, аналогичную табл. 1.

9. Сделайте выводы по всем результатам работы.

Контрольные вопросы

1. Назовите виды сил в механике.

2. Объяснить физическую природу сил трения.

3. Что называется коэффициентом трения? Его размерность?

4. Какие факторы влияют на величину коэффициента трения покоя, скольжения, качения?

5. Описать общий характер движения твердого тела при качении.

6. Как направлен момент силы трения при качении по наклонной плоскости?

7. Записать систему уравнений динамики при качении цилиндра (шара) по наклонной плоскости.

8. Вывести формулу (13).

9. Вывести формулу (20).

10. Шар и цилиндр с одинаковыми массами m и равными радиусами R одновременно начинают скатываться по наклонной плоскости с высоты h . Одновременно ли они достигнут нижней точки (h = 0)?

11. Объяснить причину торможения катящегося тела.

Библиографический список

1. Савельев, И. В. Курс общей физики в 3­х т. Т. 1 / И. В. Савельев. – М.: Наука, 1989. – § 41–43.

2. Хайкин, С. Э. Физические основы механики / С. Э. Хайкин. – М: Наука, 1971. – § 97.

3. Трофимова Т. И. Курс физики / Т. И. Трофимова. – М: Высш. шк., 1990. – § 16–19.

На поверхности Земли сила тяжести (гравитация ) постоянна и равна произведению массы падающего тела на ускорение свободного падения: F g = mg

Следует заметить, что ускорение свободного падения величина постоянная: g=9,8 м/с 2 , и направлена к центру Земли. Исходя из этого можно сказать, что тела с разной массой будут падать на Землю одинаково быстро. Как же так? Если бросить с одинаковой высоты кусочек ваты и кирпич, то последний проделает свой путь до земли быстрее. Не забывайте о сопротивлении воздуха! Для ваты оно будет существенным, поскольку ее плотность очень мала. В безвоздушном пространстве кирпич и вата упадут одновременно.

Шар движется по наклонной плоскости длиной 10 метров, угол наклона плоскости 30°. Какова будет скорость шара в конце плоскости?

На шар действует только сила тяжести F g , направленная вниз перпендикулярно к основанию плоскости. Под действием этой силы (составляющей, направленной вдоль поверхности плоскости) шар будет двигаться. Чему будет равна составляющая силы тяжести, действующей вдоль наклонной плоскости?

Для определения составляющей необходимо знать угол между вектором силы F g и наклонной плоскостью.

Определить угол довольно просто:

  • сумма углов любого треугольника равна 180°;
  • угол между вектором силы F g и основанием наклонной плоскости равен 90°;
  • угол между наклонной плоскостью и ее основанием равен α

Исходя из вышесказанного, искомый угол будет равен: 180° - 90° - α = 90° - α

Из тригонометрии:

F g накл = F g ·cos(90°-α)

Sinα = cos(90°-α)

F g накл = F g ·sinα

Это действительно так:

  • при α=90° (вертикальная плоскость) F g накл = F g
  • при α=0° (горизонтальная плоскость) F g накл = 0

Определим ускорение шара из известной формулы:

F g ·sinα = m·a

A = F g ·sinα/m

A = m·g·sinα/m = g·sinα

Ускорение шара вдоль наклонной плоскости не зависит от массы шара, а только от угла наклона плоскости.

Определяем скорость шара в конце плоскости:

V 1 2 - V 0 2 = 2·a·s

(V 0 =0) - шар начинает движение с места

V 1 2 = √2·a·s

V = 2·g·sinα·S = √2·9,8·0,5·10 = √98 = 10 м/с

Обратите внимание на формулу! Скорость тела в конце наклонной плоскости будет зависеть только от угла наклона плоскости и ее длины.

В нашем случае скорость 10 м/с в конце плоскости будет иметь и бильярдный шар, и легковой автомобиль, и самосвал, и школьник на санках. Конечно же, трение мы не учитываем.

Тело, которое соскальзывает вниз по наклонной плоскости . В этом случае на него действуют следующие силы:

Сила тяжести mg, направленная вертикально вниз;

Сила реакции опоры N, направленная перпендикулярно плоскости;

Сила трения скольжения Fтр, направлена противоположно скорости (вверх вдоль наклонной плоскости при соскальзывании тела).

Введем наклонную систему координат, ось OX которой направлена вдоль плоскости вниз. Это удобно, потому что в этом случае придется раскладывать на компоненты только один вектор - вектор силы тяжести mg, а вектора силы трения Fтр и силы реакции опоры N уже направлены вдоль осей. При таком разложении x-компонента силы тяжести равна mg sin(α) и соответствует «тянущей силе», ответственной за ускоренное движение вниз, а y-компонента - mg cos(α) = N уравновешивает силу реакции опоры, поскольку вдоль оси OY движение тела отсутствует.

Сила трения скольжения Fтр = µN пропорциональна силе реакции опоры. Это позволяет получить следующее выражение для силы трения: Fтр = µmg cos(α). Эта сила противонаправлена «тянущей» компоненте силы тяжести. Поэтому для тела, соскальзывающего вниз, получаем выражения суммарной равнодействующей силы и ускорения:

Fx = mg(sin(α) – µ cos(α));

ax = g(sin(α) – µ cos(α)).

ускорение:

скорость равна

v=ax*t=t*g(sin(α) – µ cos(α))

через t=0.2 с

скорость равна

v=0.2*9.8(sin(45)-0.4*cos(45))=0.83 м/с

Силу, с которой тело притягивается к Земле под действием поля тяготения Земли, называют силой тяжести. По закону всемирного тяготения на поверхности Земли (или вблизи этой поверхности) на тело массой m действует сила тяжести

Fт=GMm/R2 (2.28)

где М - масса Земли; R - радиус Земли.

Если на тело действует только сила тяжести, а все другие силы взаимно уравновешены, тело совершает свободное падение. Согласно второму закону Ньютона и формуле (2,28) модуль ускорения свободного падения g находят по формуле

g=Fт/m=GM/R2. (2.29)

Из формулы (2.29) следует, что ускорение свободного падения не зависит от массы m падающего тела, т.е. для всех тел в данном месте Земли оно одинаково. Из формулы (2.29) следует, что Fт = mg. В векторном виде

В § 5 было отмечено, что поскольку Земля не шар, а эллипсоид вращения, ее полярный радиус меньше экваториального. Из формулы (2.28) видно, что по этой причине сила тяжести и вызываемое ею ускорение свободного падения на полюсе больше, чем на экваторе.

Сила тяжести действует на все тела, находящиеся в поле тяготения Земли, однако не все тела падают на Землю. Это объясняется тем, что движению многих тел препятствуют другие тела, например опоры, нити подвеса и т. п. Тела, ограничивающие движение других тел, называют связями. Под действием силы тяжести связи деформируются и сила реакции деформированной связи по третьему закону Ньютона уравновешивает силу тяжести.

В § 5 отмечалось также, что на ускорение свободного падения влияет вращение Земли. Это влияние объясняется так. Системы отсчета, связанные с поверхностью Земли (кроме двух, связанных с полюсами Земли), не являются, строго говоря, инерциальными системами отсчета - Земля вращается вокруг своей оси, а вместе с ней движутся по окружностям с центростремительным ускорением и такие системы отсчета. Эта неинерциальность систем отсчета проявляется, в частности, в том, что значение ускорения свободного падения оказывается различным в разных местах Земли и зависит от географической широты того места, где находится связанная с Землей система отсчета, относительно которой определяется ускорение свободного падения.

Измерения, проведенные на разных широтах, показали, что числовые значения ускорения свободного падения мало отличаются друг от друга. Поэтому при не очень точных расчетах можно пренебречь неинерциальностью систем отсчета, связанных с поверхностью Земли, а также отличием формы Земли от сферической, и считать, что ускорение свободного падения в любом месте Земли одинаково и равно 9,8 м/с2.

Из закона всемирного тяготения следует, что сила тяжести и вызываемое ею ускорение свободного падения уменьшаются при увеличении расстояния от Земли. На высоте h от поверхности Земли модуль ускорения свободного падения определяют по формуле

Установлено, что на высоте 300 км над поверхностью Земли ускорение свободного падения меньше, чем у поверхности Земли, на 1 м/с2.

Следовательно, вблизи Земли (до высот нескольких километров) сила тяжести практически не изменяется, а потому свободное падение тел вблизи Земли является движением равноускоренным.

Вес тела. Невесомость и перегрузки

Силу, в которой вследствие притяжения к Земле тело действует на свою опору или подвес, называют весом тела. В отличие от силы тяжести, являющейся гравитационной силой, приложенной к телу, вес - это упругая сила, приложенная к опоре или подвесу (т. е. к связи).



Наблюдения показывают, что вес тела Р, определяемый на пружинных весах, равен действующей на тело силе тяжести Fт только в том случае, если весы с телом относительно Земли покоятся или движутся равномерно и прямолинейно; В этом случае

Если же тело движется ускоренно, то его вес зависит от значения этого ускорения и от его направления относительно направления ускорения свободного падения.

Когда тело подвешено на пружинных весах, на него действуют две силы: сила тяжести Fт=mg и сила упругости Fyп пружины. Если при этом тело движется по вертикали вверх или вниз относительно направления ускорения свободного падения, значит векторная сумма сил Fт и Fуп дает равнодействующую, вызывающую ускорение тела, т. е.

Fт + Fуп=mа.

Согласно приведенному выше определению понятия "вес", можно написать, что Р=-Fyп. с учетом того, что Fт=mg, следует, что mg-mа=-Fyп. Следовательно, Р=m(g-а).

Силы Fт и Fуп направлены по одной вертикальной прямой. Поэтому если ускорение тела а направлено вниз (т.е. совпадает по направлению с ускорением свободного падения g), то по модулю

Если же ускорение тела направлено вверх (т. е. противоположно направлению ускорения свободного падения), то

Р = m = m(g+а).

Следовательно, вес тела, ускорение которого совпадает по направлению с ускорением свободного падения, меньше веса покоящегося тела, а вес тела, ускорение которого противоположно направлению ускорения свободного падения, больше веса покоящегося тела. Увеличение веса тела, вызванное его ускоренным движением, называют перегрузкой.

При свободном падении a=g. следует, что в таком случае Р=0, т. е. вес отсутствует. Следовательно, если тела движутся только под действием силы тяжести (т. е. свободно падают), они находятся в состоянии невесомости. Характерным признаком этого состояния является отсутствие у свободно падающих тел деформаций и внутренних напряжений, которые вызываются у покоящихся тел силой тяжести. Причина невесомости тел заключается в том, что сила тяжести сообщает свободно падающему телу и его опоре (или подвесу) одинаковые ускорения.

Пусть небольшое тело находится на наклонной плоскости с углом наклона a (рис. 14.3,а ). Выясним: 1) чему равна сила трения, если тело скользит по наклонной плоскости; 2) чему равна сила трения, если тело лежит неподвижно; 3) при каком минимальном значении угла наклона a тело начинает соскальзывать с наклонной плоскости.

а) б)

Сила трения будет препятство­вать движению, следовательно, она будет направлена вверх по наклонной плоскости (рис. 14.3,б ). Кроме силы трения, на тело действуют еще сила тяжести и сила нормальной реакции . Введем систему координат ХОУ , как по­казано на рисунке, и найдем проекции всех указанных сил на коор­динатные оси:

Х : F трХ = –F тр, N X = 0, mg X = mg sina;

Y : F трY = 0, N Y = N , mg Y = –mg cosa.

Поскольку ускоряться тело может только по наклонной плоскости, то есть вдоль оси X , то очевидно, что проекция вектора ускорения на ось Y всегда будет равна нулю: а Y = 0, а значит, сумма проекций всех сил на ось Y также должна равняться нулю:

F трY + N Y + mg Y = 0 Þ 0 + N – mg cosa = 0 Þ

N = mg cosa. (14.4)

Тогда сила трения скольжения согласно формуле (14.3) равна:

F тр.ск = mN = mmg cosa. (14.5)

Если тело покоится , то сумма проекций всех сил, действующих на тело, на ось Х должна равняться нулю:

F трХ + N Х + mg Х = 0 Þ –F тр + 0 + mg sina = 0 Þ

F тр.п = mg sina. (14.6)

Если мы будем постепенно увеличивать угол наклона, то величина mg sina будет постепенно увеличиваться, а значит, будет уве­личиваться и сила трения покоя, которая всегда «автоматически подстраивается» под внешнее воздействие и компенсирует его.

Но, как мы знаем, «возможности» силы трения покоя не безгранич­ны. При каком-то угле a 0 весь «ресурс» силы трения покоя будет исчерпан: она достигнет своего максимального значения, равного силе трения скольжения. Тогда будет справедливо равенство:

F тр.ск = mg sina 0 .

Подставив в это равенство значение F тр.ск из формулы (14.5), получим: mmg cosa 0 = mg sina 0 .

Разделив обе части последнего равенства на mg cosa 0 , получим:

Þ a 0 = arctgm.

Итак, угол a, при котором начинается скольжение тела по наклонной плоскости, задается формулой:

a 0 = arctgm. (14.7)

Заметим, что если a = a 0 , то тело может или лежать неподвижно (если к нему не прикасаться), или скользить с постоянной скоростью вниз по наклонной плоскости (если его чуть-чуть толкнуть). Если a < a 0 , то тело «стабильно» неподвижно, и легкий толчок не произведет на него никакого «впечатления». А если a > a 0 , то тело будет соскальзывать с наклонной плоскости с ускорением и безо всяких толчков.

Задача 14.1. Человек везет двое связанных между собой саней (рис. 14.4,а ), прикладывая силу F под углом a к горизонту. Массы саней одинаковы и равны т . Коэффициент трения полозьев по снегу m. Найти ускорение саней и силу натяжения Т веревки между санями, а также силу F 1 , с которой должен тянуть веревку человек для того, чтобы сани двигались равномерно.

F a m m а) б) Рис. 14.4
а = ? Т = ? F 1 = ?

Решение . Запишем второй закон Ньютона для каждых саней в проекциях на оси х и у (рис. 14.4,б ):

I у : N 1 + F sina – mg = 0, (1)

x : F cosa – T – mN 1 = ma ; (2)

II у : N 2 – mg = 0, (3)

x : T – mN 2 = ma . (4)

Из (1) находим N 1 = mg – F sina, из (3) и (4) находим Т = mmg+ + ma. Подставляя эти значения N 1 и Т в (2), получаем

.

Подставляя а в (4), получаем

T = mN 2 + ma = mmg + та =

Mmg + т .

Чтобы найти F 1 , приравняем выражение для а к нулю:

Ответ : ; ;

.

СТОП! Решите самостоятельно: В1, В6, С3.

Задача 14.2. Два тела массами т и М связаны нитью, как показано на рис. 14.5,а . С каким ускорением движется тело М , если коэффициент трения о поверхность стола m. Каково натяжение нити Т ? Какова сила давления на ось блока?

т М m Решение. Запишем второй закон Ньютона в проекциях на оси х 1 и х 2 (рис. 14.5,б ), учитывая, что : х 1: Т – mMg = Ма , (1) х 2: mg – T = ma . (2) Решая систему уравнений (1) и (2), находим:
а = ? Т = ? R = ?

Если грузы не движутся, то .

Ответ : 1) если т < mМ , то а = 0, Т = mg , ; 2) если т ³ mМ , то , , .

СТОП! Решите самостоятельно: В9–В11, С5.

Задача 15.3. Два тела массами т 1 и т 2 связаны нитью, перекинутой через блок (рис. 14.6). Тело т 1 находится на наклонной плоскости с углом наклона a. Коэффициент трения о плоскость m. Тело массой т 2 висит на нити. Найти ускорение тел, силу натяжения нити и силу давления блока на ось при условии, когда т 2 < т 1 . Считать tga > m.

Рис. 14.7

Запишем второй закон Ньютона в проекциях на оси х 1 и х 2 , учитывая, что и :

х 1: т 1 g sina – Т – mm 1 g cosa = m 1 a ,

х 2: T – m 2 g = m 2 a .

, .

Так как а >0, то

Если неравенство (1) не выполняется, то груз т 2 точно не движется вверх! Тогда возможны еще два варианта: 1) система неподвижна; 2) груз т 2 движется вниз (а груз т 1 , соответственно, вверх).

Предположим, что груз т 2 движется вниз (рис. 14.8).

Рис. 14.8

Тогда уравнения второго закона Ньютона на оси х 1 и х 2 будут иметь вид:

х 1: Т – т 1 g sina mm 1 g cosa = m 1 a ,

х 2: m 2 g – Т = m 2 a .

Решая эту систему уравнений, находим:

, .

Так как а >0, то

Итак, если выполняется неравенство (1), то груз т 2 едет вверх, а если выполняется неравенство (2), то – вниз. Следовательно, если не выполняется ни одно из этих условий, т.е.

,

система неподвижна.

Осталось найти силу давления на ось блока (рис. 14.9). Силу давления на ось блока R в данном случае можно найти как диагональ ромба АВСD . Так как

ÐADC = 180° – 2 ,

где b = 90°– a, то по теореме косинусов

R 2 = .

Отсюда .

Ответ :

1) если , то , ;

2) если , то , ;

3) если , то а = 0; Т = т 2 g .

Во всех случаях .

СТОП! Решите самостоятельно: В13, В15.

Задача 14.4. На тележку массой М действует горизонтальная сила F (рис. 14.10,а ). Коэффициент трения между грузом т и тележкой равен m. Определить ускорение грузов. Какой должна быть минимальная сила F 0 , чтобы груз т начал скользить по тележке?

M , т F m а) б) Рис. 14.10
а 1 = ? а 2 = ? F 0 = ?

Решение . Сначала заметим, что сила, приводящая груз т в движение, – это сила трения покоя , с которой тележка действует на груз. Максимально возможное значение этой силы равно mmg .

По третьему закону Ньютона груз действует на тележку с такой же по величине силой – (рис. 14.10,б ). Проскальзывание начинается в тот момент, когда уже достигла своего максимального значения , но система еще движется как одно тело массой т +М с ускорением . Тогда по второму закону Ньютона

Несмотря на другие условия движения принципиально решение задачи 8 ничем не отличается от решения задачи 7. Отличие состоит лишь в том, что в задаче 8 действующие на тело силы не лежат вдоль одной прямой, поэтому проекции необходимо взять на две оси.

Задача 8. Лошадь везет сани массой 230 кг, действуя на них с силой 250 Н. Какое расстояние пройдут сани, пока достигнут скорости 5,5 м/с, двигаясь из состояния покоя. Коэффициент трения скольжения саней о снег равен 0,1, а оглобли расположены под углом 20° к горизонту.

На сани действуют четыре силы: сила тяги (натяжения), направленная под углом 20° к горизонту; сила тяжести, направленная вертикально вниз (всегда); сила реакции опоры, направленная перпендикулярно опоре от нее, т. е. вертикально вверх (в данной задаче); сила трения скольжения, направленная против движения. Поскольку сани будут двигаться поступательно, все приложенные силы можно параллельно перенести в одну точку – в центр масс движущегося тела (саней). Через эту же точку проведем и оси координат (рис. 8).

На основании второго закона Ньютона запишем уравнение движения :

.

Направим ось Ox горизонтально вдоль направления движения (см. рис. 8), а ось Oy – вертикально вверх. Возьмем проекции векторов, входящих в уравнение, на координатные оси, добавим выражение для силы трения скольжения и получим систему уравнений:

Решим систему уравнений. (Схема решения системы уравнений, подобных системе, обычно одинакова: из второго уравнения выражают силу реакции опоры и подставляют ее в третье уравнение, а затем выражение для силы трения подставляют в первое уравнение.) В результате получим:

Перегруппируем слагаемые в формуле и разделим ее правую и левую части на массу:

.

Поскольку ускорение не зависит от времени, выберем формулу кинематики равноускоренного движения, содержащую скорость, ускорение и перемещение:

.

Учитывая, что начальная скорость равна нулю, а скалярное произведение одинаково направленных векторов равно произведению их модулей, подставим ускорение и выразим модуль перемещения:

;

Полученное значение и есть ответ задачи, поскольку при прямолинейном движении пройденный путь и модуль перемещения совпадают.

Ответ : сани пройдут 195 м.

    1. Движение по наклонной плоскости

Описание движения небольших тел по наклонной плоскости принципиально не отличается от описания движения тел по вертикали и по горизонтали, поэтому при решении задач на этот вид движения, как и в задачах 7, 8, также необходимо записать уравнение движения и взять проекции векторов на координатные оси. Разбирая решение задачи 9, необходимо обратить внимание на схожесть подхода к описанию различных видов движения и на нюансы, которые отличают решение этого типа задач от решения задач, рассмотренных выше.

Задача 9. Лыжник соскальзывает с длинной ровной заснеженной горки, угол наклона к горизонту которой составляет 30°, а длина равна 140 м. Сколько времени будет длиться спуск, если коэффициент трения скольжения лыж о рыхлый снег равен 0,21?

Дано:

Решение.

Движение лыжника по нак-лонной плоскости происходит под действием трех сил: силы тяжести, направленной вертикально вниз; силы реакции опоры, направленной перпендикулярно к опоре; силы трения скольжения, направленной против движения тела. Пренебрегая размерами лыжника по сравнению с длиной горки, на основании второго закона Ньютона запишем уравнение движения лыжника:

.

Выберем ось Ox вниз вдоль наклонной плоскости (рис. 9), а ось Oy – перпендикулярно наклонной плоскости вверх. Возьмем проекции векторов уравнения на выбранные координатные оси с учетом того, что ускорение направлено вдоль наклонной плоскости вниз, и добавим к ним выражение, определяющее силу трения скольжения. Получим систему уравнений:

Решим систему уравнений относительно ускорения. Для этого из второго уравнения системы выразим силу реакции опоры и подставим полученную формулу в третье уравнение, а выражение для силы трения – в первое. После сокращения массы имеем формулу:

.

Ускорение не зависит от времени, значит, можно воспользоваться формулой кинематики равноускоренного движения, содержащей перемещение, ускорение и время:

.

С учетом того, что начальная скорость лыжника равна нулю, а модуль перемещения равен длине горки, выразим из формулы время и, подставляя в полученную формулу ускорение, получим:

;

Ответ : время спуска с горы 9,5 с.





Copyright © 2024 Медицина и здоровье. Онкология. Питание для сердца.