Инструментальные методы исследования. Классификация инструментальных методов анализа Инструментальные методы в судебно химическом анализе

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ОБНИНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ

УНИВЕРСИТЕТ АТОМНОЙ ЭНЕРГЕТИКИ (ИАТЭ)

Факультет естественных наук

С.В.КРУГЛОВ, Т.В.МЕЛЬНИКОВА

Лабораторный практикум по курсу

«Инструментальные методы анализа»

Обнинск 2007

УДК 502/504(076.5)

Круглов С.В, Мельникова Т.В. Лабораторный практикум по курсу «Инструментальные методы анализа». - Обнинск: ИАТЭ, 2007. - 84 с.

Учебное пособие содержит описание лабораторных работ и краткое изложение теоретических основ электрохимических, спектральных и хроматографических методов анализа, широко применяемых при мониторинге окружающей среды и в экологических исследованиях. В конце каждой главы приведены контрольные вопросы для проверки закрепления материала.

В Приложении рассматриваются традиционные методы математической статистики и их применение для обработки результатов измерений.

Пособие предназначено для использования студентами, обучающимися по специальностям 020801 - экология и 020803 - биоэкология.

© Обнинский государственный технический университет атомной энергетики, 2007.

ВВЕДЕНИЕ

Оценка экологической ситуации предполагает аналитический контроль (мониторинг) природных объектов, чрезвычайно разнообразных по своей природе и составу. В их числе воздушные массы, воды, почвы, растения, сельскохозяйственная продукция, продукты питания животного и растительного происхождения и другие. Природные матрицы являются одними из наиболее сложных объектов анализа, в том числе и по количеству контролируемых компонентов, а аналитические задачи часто связаны с определением крайне низких количеств веществ, присутствующих в природных объектах на уровне миллионных или миллиардных долей (млн-1, млрд-1).

Термин «инструментальные методы анализа» появился в 60-е годы прошлого века для обозначения аналитических методов, основанных на использовании для выполнения конкретных видов измерений специализированного приборного оснащения, выпускаемого в промышленном масштабе и позволяющего облегчить подготовку проб, автоматизировать процесс измерения и проводить обработку результатов анализа с применением методов математической статистики. В настоящее время это одно из современных и интенсивно развивающихся направлений аналитической химии и физики, сочетающих последние достижения различных отраслей науки и техники, и широко использующих возможности микропроцессорной техники.

Повышаются требования и к квалификации аналитиков. Они должны владеть знаниями и методами не только аналитической химии, но и математической статистики, без чего невозможны обеспечение качества анализа, минимизация и предупреждение погрешностей, выявление причин, вызывающих ошибочные результаты (Приложение 1).

Цель лабораторного практикума? дать общее представление о современном состоянии, теоретических основах, аппаратурном оснащении и возможностях инструментальных методов анализа, наиболее широко используемых в экологических исследованиях, а также привить навыки работы на оборудовании.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ИНСТРУМЕНТАЛЬНЫХ МЕТОДОВ АНАЛИЗА

Благодаря своей многовариантности, инструментальные методы анализа обеспечивают необходимую селективность определений, обладают высокими метрологическими показателями в широком диапазоне варьирования концентраций определяемых компонентов. Ни один из современных методов анализа, однако, не является универсальным, поэтому выбор метода, подходящего для решения конкретной задачи, должен быть тщательным. При сравнении какого-либо аналитического метода с другими, необходимо принимать во внимание ряд показателей, в совокупности характеризующих метод:

область применения? объекты анализа и номенклатура веществ (неорганических и органических), определение которых возможно с использованием данного метода;

рабочий диапазон определяемых концентраций? интервал, в котором возможно определение компонента без применения дополнительных стадий разбавления или концентрирования;

линейный диапазон? способность метода давать аналитический сигнал, прямо пропорциональный концентрации анализируемых веществ в образце (непосредственно или после пересчета данных с использованием известных математических функций);

селективность? возможность определения интересующего вещества в присутствии мешающих компонентов или при действии мешающих факторов (например, матричные эффекты);

метрологические характеристики? чувствительность определения, предел обнаружения, воспроизводимость, точность и правильность результатов измерений;

производительность оборудования? время, затрачиваемое на единичное измерение, общая продолжительность анализа с учетом подготовки проб, измерения и выдачи результатов, автоматизации процессов пробоподготовки, измерения и выдачи результатов;

аппаратурное оснащение? сложность и стоимость аппаратурного оснащения, возможность применения его в производственных и полевых условиях;

требования к подготовке и квалификации персонала (лаборант, инженер, необходимость специальной подготовки).

Методы, которые одинаково удовлетворяли бы всем вышеперечисленным требованиям, пока не разработаны, но основные условия могут быть соблюдены при использовании современных физико-химических методов анализа и их комбинаций.

При выборе адекватного метода необходимо также учитывать:

групповые характеристики и особенности физико-химических свойств веществ, подлежащих определению;

физические свойства и химический состав матрицы исследуемых объектов;

возможный диапазон изменения концентраций определяемого вещества в объектах контроля;

требования, предъявляемые к способу подготовки пробы вещества перед измерением.

В число инструментальных методов входят как современные высокопроизводительные методы многоэлементного анализа, требующие сложного и дорогостоящего оборудования, высокой квалификации обслуживающего персонала, так и давно известные, достаточно простые и дешевые, но продолжающие модернизироваться. Если первые требуют высоких разовых затрат (высокая цена приборов), то вторые? сравнительно больших текущих затрат (большая трудоемкость). При массовых анализах целесообразны разовые затраты на приобретение современного высокопроизводительного оборудования, но небольшое число анализов лучше выполнять методами, требующими относительно дешевых приборов.

ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ

Электрохимические методы анализа играют важную роль в современной аналитической химии, поскольку характеризуются высокой чувствительностью, низкими пределами обнаружения, широким интервалом определяемых содержаний, простотой и невысокой стоимостью аппаратуры. Электрохимическое детектирование часто применяется также в гибридных методах анализа (хроматография, электрофорез, проточно-инжекционный анализ).

Методы основаны на использовании процессов электронного переноса или ионного обмена, протекающих на поверхности электрода или в приэлектродном пространстве. Аналитическим сигналом служит любой электрический параметр (потенциал, ток I, электродвижущая сила Е, сопротивление R и т.д.), измеряемый с достаточной точностью и функционально связанный с составом и концентрацией раствора.

В основе всех электрохимических методов лежат реакции, происходящие в электрохимических системах, состоящих из следующих основных частей:

1) проводники первого рода? вещества с электронной проводимостью, находящиеся в контакте с электролитом? электроды;

2) проводники второго рода? вещества, обладающие ионной проводимостью? электролиты;

3) проводники, обеспечивающие прохождение тока между электродами? внешняя цепь.

На поверхности раздела фаз электрод - электролит происходит перенос электрического заряда, т.е. протекает электрохимическая реакция. По направлению процесса взаимного превращения электрической и химической форм энергии различают два типа электрохимических систем: электролитическую ячейку и гальванический элемент (рис. 1 а,б). Электролитической ячейкой называется система, в которой за счет приложенного извне электрического тока происходят химические превращения веществ на электродах. Гальванический элемент - система, в которой за счет химических превращений веществ на электродах возникает электрический ток во внешней цепи.

При прохождении постоянного электрического тока через ячейку на одном электроде протекает реакция восстановления (присоединение электронов к восстанавливаемым ионам или молекулам):

KOx + mз KRed,

на другом электроде - реакция окисления (потеря электронов окисляющимися ионами или молекулами):

ARed - nз AOx.

Рис. 1. Схематическое изображение электрохимических систем: а - электролитическая ячейка (электролизер); б? гальванический элемент

Количество принятых mз и отданных nз электронов должно быть равно, поэтому уравнение окислительно-восстановительного процесса можно записать в виде:

aKOx + bARed = cKRed + dAOx,.

где индексами “Ox” и “Red” обозначены окисленная и восстановленная формы веществ.

Реакции восстановления называют катодными, окисления? анодными. В соответствии с характером реакций, протекающих на электродах, их называют катодом и анодом. Гальванический элемент является системой, обратной электролитической ячейке: катод имеет положительный знак заряда, а анод? отрицательный.

Если химический потенциал металла, используемого в качестве электрода Ме1, больше его потенциала в растворе, металл растворяется и ионы Ме1+ переходят в раствор. Обратный процесс выделения металла из раствора протекает с меньшей скоростью. На поверхности электрода скапливаются электроны, и она заряжается отрицательно, поэтому ионы не диффундируют в глубину электролита, а остаются у электрода. Со временем устанавливается динамическое равновесие: сколько ионов переходит в раствор, столько же и возвращается из раствора в металл. Поверхность электрода приобретает отрицательный заряд, прилежащий слой электролита равный ему положительный, а на границе раздела раствор - металл образуется двойной электрический слой, которому соответствует скачок потенциала, называемый равновесным электродным потенциалом 1 системы (Ме10/Ме1+).

Когда потенциал элемента в растворе выше потенциала его металлической формы, ионы Ме2+ сорбируются на поверхности электрода и он заряжается положительно, а прилегающий слой электролита? отрицательно из-за притягивания ионов противоположного знака из раствора. Образуется двойной электрический слой, соответствующий обкладкам физического конденсатора, и на границе фаз возникает скачок потенциала, являющийся равновесным электродным потенциалом 2 системы (Ме20/Ме2+). При замыкании контакта К амперметр покажет наличие в цепи тока, т.к. мы получили электрическую цепь, в которой два электрода имеют разные потенциалы, что ведет к возникновению ЭДС. Потенциалы 1 и 2 могут отличаться по величине и знаку.

Электрохимические методы анализа подразделяют на:

методы, основанные на электродных реакциях, протекающих в отсутствие внешнего источника тока (потенциометрия, ионометрия с ионоселективными электродами);

методы, использующие электродные реакции, протекающие под током (вольтамперометрия, кулонометрия);

методы, в которых протекание электродных реакций в расчет не принимается или они отсутствуют (кондуктометрия).

Электрохимические методы анализа применяют для прямых измерений, используя зависимость «аналитический сигнал? состав раствора», или в сочетании с методами объемного анализа для установления конечной точки титрования.

Типы электродов, применяемых в электрохимических методах

Различают обратимые и необратимые электроды. На обратимых электродах при перемене направления электрического тока возникают реакции, противоположные по направлению (например, металл Cu в растворе, содержащем ионы Cu2+):

Cu Cu2+ + 2з и Cu2+ + 2з Cuv.

На необратимых электродах при изменении направления тока протекают не обратные друг другу реакции (Cu в растворе кислоты):

Cu Cu2+ + 2з и 2H+ + 2з H2^.

Из обратимых электродов могут быть составлены обратимые электрохимические цепи (пары, гальванические элементы).

Классификация обратимых электродов

Электроды I рода? металл, погруженный в раствор его соли. Образует окислительно-восстановительную систему, в которой потенциал электрода определяется относительной активностью (концентрацией) ионов в растворе. К электродам первого рода относятся ртутный, серебряный, платиновый, медный, кадмиевый и другие. Т.к. активность твердого вещества при данной температуре постоянна и равна единице, электродный потенциал будет определяться выражением:

, (1)

где? равновесный потенциал; 0 - стандартный потенциал; R - молярная газовая постоянная (8.314 Дж моль-1 К-1); Т - температура (К); n - количество электронов, участвующих в реакции; F - постоянная Фарадея (96496 Кл моль-1); a - активность ионов в растворе.

Стандартный электродный потенциал 0 ? это потенциал электрода при T = 25С, P = 1 атм. и активности потенциалопределяющих ионов, равной 1. Для каждого металла 0 величина постоянная, ее можно найти в таблице стандартных электродных потенциалов.

К электродам первого рода, обратимым относительно катиона, относится и газовый водородный электрод (Pt)H2,H+, т.к. на платиновом электроде при насыщении его водородом устанавливается равновесие:

2Н+ +2з Н2 (адсорбированный) Н2 (газ).

Потенциал водородного электрода условно принимают равным нулю, а любому другому электроду, измеренному по отношению к нему, приписывают потенциал, равный э.д.с. образующегося гальванического элемента. Заряд электрода из металла, стоящего в ряду активностей после водорода, будет отрицательным, до водорода - положительным.

Электроды II рода? металл, покрытый слоем его малорастворимого соединения (соль, оксид, гидроксид), находится в равновесии с раствором, содержащим избыток хорошо растворимой соли с таким же анионом. Потенциал электрода определяется концентрацией аниона

К этому типу относится хлорсеребряный электрод Ag|AgCl|Cl-, часто применяемый в качестве электрода сравнения.

Инертные электроды? инертное вещество с электронной проводимостью (чаще всего, Pt или Ag проволока в стеклянном корпусе), погруженное в раствор, содержащий вещества в различной степени окисления. Электрод выполняет функцию переноса электронов от восстановленной к окисленной форме вещества и принимает потенциал окислительно-восстановительной системы, существующей в растворе:

где aOx и aRed - активность ионов в окисленной и восстановленной форме. Если использовать связь активности иона в растворе с его концентрацией a = c, уравнение Нернста устанавливает зависимость величины равновесного потенциала от концентрации ионов:

где COx и CRed - концентрация окисленной и восстановленной формы вещества в растворе.

Ионообменные (ионоселективные, мембранные) электроды состоят из вещества с активной функцией (ионита) и раствора, которые способны обмениваться ионами:

А+и + М+р А+р + М+и,

где индексы «и» и «р» обозначают ионы в составе ионита и в растворе.

Реакция характеризуется константой равновесия (обмена), которая определяет степень замещения в ионите ионов одного рода ионами другого рода из раствора:

Кобмена = Ар Ми/Аи Мр.

При установившемся равновесии обменного процесса поверхность ионита и прилежащий раствор приобретают электрические заряды противоположного знака, на границе ионит? раствор возникает двойной электрический слой, которому соответствует скачок потенциала. Потенциал электрода определяется выражением

E = E0 +/zAlg(A + KA/B(B) zB/zA), (5)

где E0 ? константа, зависящая от значений стандартных потенциалов внутреннего и внешнего электродов сравнения и природы мембраны ИСЭ; A, zA и B, zB - соответственно активности и заряды основного (потенциалопределяющего) и постороннего (мешающего) ионов; KA/B ? коэффициент селективности электрода по отношению к определяемому иону А+ на фоне мешающих ионов В+.

К этой группе относятся стеклянный электрод и ионоселективные электроды (ИСЭ) для определения катионов и анионов.

Потенциометрические методы

Потенциометрические методы анализа основаны на измерении электродвижущей силы (E) обратимого гальванического элемента, состоящего из двух электродов? индикаторного и электрода сравнения, погруженных в один раствор (цепь без переноса), либо в два различающихся по составу раствора (цепь с переносом), связанных жидкостным контактом (электролитическим мостиком). Е представляет собой разность потенциалов между двумя электродами системы:

E = B - A. (6)

Электрод сравнения? электрод, потенциал которого не зависит от состава и концентрации анализируемых растворов, постоянен в процессе измерения и служит исключительно для определения потенциала индикаторного электрода (в этом случае изменение Е гальванического элемента определяется изменением равновесного потенциала индикаторного электрода). В качестве электродов сравнения обычно применяют электроды II рода (хлорсеребряный, Е0= +0.1988 В при 25 єС).

Потенциал индикаторного электрода должен мгновенно устанавливаться в соответствии с концентрацией анализируемых ионов в растворе и не зависеть от концентрации других ионов. В потенциометрии используют два класса индикаторных электродов.

1. Электроды, на межфазных границах которых протекают электронообменные процессы. Их функционирование основано на зависимости равновесного потенциала от концентрации исследуемого раствора, описываемой уравнением Нернста:

, (7)

где E ? равновесный потенциал; E0? стандартный потенциал (равен равновесному, когда активности всех участвующих в электрохимической реакции веществ равны 1); n ? число участвующих в реакции электронов; aOx и aRed ? активности ионов в окисленной и восстановленной формах.

Множитель перед знаком логарифма называется крутизной электродной функции (S) и имеет численное значение 59.2 мВ (n=1) или 29.4 мВ (n=2) при 25єС.

Чаще всего это активные металлические электроды I рода (Ag, Cu, Cd и др.) или инертные металлы (Pt, Pd). В качестве индикаторного электрода нельзя использовать Al, Fe, Ni, Ti, Cr и другие металлы, для которых характерны невоспроизводимые потенциалы, что объясняется образованием оксидных слоев на поверхности металла, его напряжениями и деформациями.

2. Электроды, на межфазных границах которых протекают ионообменные процессы (ИСЭ). Потенциал системы, состоящей из погруженных в исследуемый раствор электрода сравнения и ИСЭ, описывается модифицированным уравнением Нернста (уравнение Никольского-Эйзенмана):

, (8)

где E ? константа, зависящая от значений стандартных потенциалов внутреннего и внешнего электродов сравнения и природы мембраны ИСЭ; ai и zi, ak и zk ? соответственно активности и заряды основного (потенциалопределяющего) и постороннего ионов; Ki/k ? коэффициент селективности ИСЭ по отношению к потенциалопределяющему иону (i) в присутствии постороннего иона (к). Хорошие ИСЭ имеют коэффициент селективности 10-3-10-5.

В настоящее время промышленно выпускается несколько десятков типов ИСЭ, предназначенных для определения разных ионов в сложных по составу растворах. К этой группе относится и стеклянный электрод, обратимый относительно ионов H+.

По способу выполнения измерений различают:

прямой потенциометрический анализ - определение активности (концентрации) ионов в растворе по измеренному значению равновесного потенциала соответствующего индикаторного электрода (рН-метрия, ионометрия с ИСЭ);

потенциометрическое титрование? регистрация изменения потенциала индикаторного электрода в ходе химической реакции определяемого иона с подходящим реагентом и индикация конечной точки титрования (точки эквивалентности).

Прямая потенциометрия (ионометрия)

Для измерения ЭДС гальванических элементов с ИСЭ наиболее часто используют электронные вольтметры различных марок с высоким входным сопротивлением (иономеры, рН- и pX-метры).

При работе с ИСЭ необходима предварительная его градуировка? установление зависимости между потенциалом электрода и активностью (концентрацией) определяемых ионов. Для построения градуировочного графика в координатах E?pai (Е?рсi) используют серию стандартных растворов определяемого вещества, приготовленных путем последовательного разбавления исходного раствора известной концентрации. Величина pai (рсi) рассчитывается как отрицательный логарифм активности (концентрации) иона: pai=-lgai. При этом считается, что коэффициент активности изучаемого иона известен, либо может быть легко вычислен. Вид электродной функции для однозарядного катиона приведен на рис. 2.

По результатам градуировки определяют следующие электрохимические характеристики ионоселективного электрода:

линейную) область электрод-ной функции? интервал линейной зависимости потенциала от актив-ности (концентрации) потенциал-определяющих ионов;

крутизну электродной функ-ции S ? угловой коэффициент наклона градуировочного графика Е?раi (E?pci) к оси абсцисс;

предел обнаружения потен-циалопределяющего иона (cmin), для чего экстраполируют линей-ный участок зависимости E?pci, точка пересечения с осью абсцисс соответствует величине cmin.

время отклика? время дости-жения стационарного потенциала;

селективность электрода относительно определяемого иона в присутствии других ионов.

Потенциометрическое титрование

Титрование производят любым известным методом (кислотно-основные и окислительно-восстановительные реакции, процессы осаждения или комплексообразования), а окончание реакции устанавливают по резкому изменению потенциала индикаторного электрода - скачку потенциала в точке эквивалентности (ТЭ). Индикаторный электрод выбирают в зависимости от типа протекающей химической реакции и природы потенциалопределяющих ионов.

Кривые титрования. В процессе потенциометрического титрования концентрация реагирующих веществ или ионов все время изменяется, что влечет за собой изменение равновесного потенциала электрода. Если по уравнению Нернста вычислить значения Еi для разных моментов титрования и построить график в координатах Еi-V, где V ? объем добавленного титранта (мл), то получим кривую титрования с резким скачком потенциала электрода (рис. 3). Существуют несколько графических способов нахождения конечной точки титрования.

Способ 1. Строят интегральную кривую в координатах E(рН)?V (объем титранта) и проводят две касательные к пологим нижней и верхней ветвям кривой (рис. 3а). Третью касательную проводят к нисходящей (или восходящей) части кривой до пересечения с двумя первыми. Полученный отрезок прямой делят пополам и получают конечную точку титрования m (ТЭ). Опуская из этой точки перпендикуляр к оси абсцисс, находят объем титранта Vэ, соответствующий ТЭ.

Рис.3. Кривые потенциометрического титрования: интегральная (а), дифференциальная (б) и по второй производной (в)

Способ 2. Более точным способом нахождения конечной точки титрования Vэкв является построение дифференциальной кривой в координатах (E/V) - V (мл), где E и V - разность между вторым и первым, между третьим и вторым, и т.д. значениями E и V соответственно. Кривая имеет пикообразную форму (рис. 3б), а конечной точке титрования соответствует максимум пика. Перпендикуляр, опущенный на ось абсцисс из точки пересечения двух восходящих ветвей кривой, показывает объем титранта Vэ, затраченный на завершение реакции.

Способ 3. Когда конечную точку титрования надо зафиксировать наиболее точно (особенно в случае асимметричных кривых титрования или при малом скачке потенциала), пользуются второй производной 2E/2V. Изображают графически зависимость 2E/2V от V (мл) и соединяют концы обеих ветвей кривой, которые находятся по разные стороны от оси абсцисс (рис. 3в). Точка пересечения полученной кривой с осью абсцисс дает объем титранта, соответствующий ТЭ.

Вольтамперометрические методы

Вольтамперометрия включает группу методов и их модификаций, базирующихся на изучении зависимости силы тока в электролитической ячейке от величины потенциала, приложенного к рабочему (индикаторному) микроэлектроду, погруженному в анализируемый раствор. Аналитическим сигналом в количественном анализе является сила тока, которая зависит от концентрации раствора электролита.

При прохождении постоянного тока через электрическую ячейку перенос электричества осуществляется за счет следующих явлений:

направленного перемещения электронов в металлических проводниках (металлическая проводимость);

перемещения заряженных частиц в растворе электролита (ионная проводимость);

электродных окислительно-восстановительных реакций на межфазной границе электрод-электролит.

Чтобы через электролитическую ячейку проходил постоянный ток, для каждого типа ионов должен быть достигнут потенциал их выделения или разряда на соответствующем электроде. Для этого на клеммы ячейки следует подать напряжение U:

U = EA ? EK + IR, (9)

где EA и EK ? электродный потенциал анода и катода, В; IR ? падение напряжения в электролите между электродами, В.

Практически требуется приложить большее напряжение, чем рассчитанное по (9), т.к. происходит поляризация электродов:

U = EA ? EK + IR + V, (10)

где V ? дополнительное напряжение на клеммах ячейки, обусловленное поляризационными явлениями на катоде и аноде.

где A и K ? поляризация (перенапряжение) анода и катода.

Электродной поляризацией называется явление перехода системы под действием внешнего источника тока из равновесного в неравновесное состояние, сопровождающееся изменением электродного потенциала, а также разность между потенциалом Е электрода под током и его равновесным потенциалом Ер в том же электролите:

Е - Ер. (12)

Для анодного процесса величина потенциала электрода под током более положительна, чем равновесный потенциал, и A имеет знак (+). Для катодного процесса потенциал электрода под током более отрицателен, чем равновесный, и K имеет знак (?).

Электродная поляризация является функцией плотности тока (чем выше плотность тока, тем больше ее значение) и связана с явлениями торможения электродного процесса, включающего несколько стадий. Когда природа лимитирующей стадии известна, вместо термина «поляризация» употребляется термин «перенапряжение». В общем случае, электродная поляризация равна сумме всех видов перенапряжения:

D + e + r + ,. (13)

где d ? диффузионное; e ? электрохимическое (перенапряжение электронного перехода); r ? реакционное (химическое) и f ? фазовое перенапряжение соответственно.

Если при изменении условий протекания электродного процесса скорость лимитирующей стадии возрастает, потенциал электрода снижается. Это снижение потенциала называется деполяризацией, а вещество, вызывающее эффект? деполяризатором.

В вольтамперометрии используют поляризуемый рабочий электрод с малой поверхностью и неполяризованный электрод сравнения. Если определяемое вещество способно восстанавливаться при прохождении тока через его раствор в ячейке, рабочий электрод делают катодом; если вещество окисляется? анодом.

Электрод сравнения имеет высокое внутреннее сопротивление и, соответственно, сильно поляризуется. Чтобы снизить поляризацию электрода сравнения, параллельно ему подключают вспомогательный электрод. Если его поверхность значительно больше поверхности рабочего микроэлектрода, вспомогательный электрод не поляризуется при изменении тока в ячейке и его потенциал остается постоянным. За счет уменьшения проходящего тока сводятся к минимуму и поляризационные явления на электроде сравнения.

Определение проводят в фоновом электролите? растворе сильного электролита, концентрация которого в 100-1000 раз превышает концентрацию анализируемого вещества. Ионы фонового электролита являются электрохимически индифферентными и не принимают участия в электродных реакциях, но увеличивают электропроводность раствора. Поэтому можно пренебречь IR в уравнении (9) и преобразовать его:

U = Eраб + зраб. (14)

Перемещаясь к рабочему электроду, катионы фонового электролита (или анионы, в зависимости от того, какой знак заряда имеет рабочий электрод), не разряжаются на нем при заданном потенциале. Оставаясь у поверхности электрода и образуя двойной электрический слой, они экранируют его электрическое поле. В результате ионы анализируемого вещества не притягиваются этим полем и перемещаются в растворе только за счет диффузии. Скорость диффузии ионов контролирует скорость электрохимического процесса в целом, поэтому величина предельного диффузионного тока будет пропорциональна концентрации анализируемых ионов в растворе.

Характеристики классической вольтамперограммы. Вольтамперная кривая служит источником информации об электродном процессе, протекающем на рабочем электроде. В частном случае, когда индикаторным служит ртутный капающий электрод, кривую зависимости силы тока от внешнего напряжения называют полярограммой. Типичный вид вольтамперной кривой показан на рис. 4а.

При малых значениях потенциала ионы анализируемого вещества не разряжаются на микроэлектроде, т.к. потенциал их разряда еще не достигнут, и ток не проходит через межфазную границу. Небольшой ток обусловлен разрядом более электроположительных примесей и называется остаточным (участок I).

Размещено на http://www.allbest.ru/

Рис. 4. Вольтамперные кривые в координатах I?Е: а? классическая вольтамперограмма; б? переменно-токовая.

При дальнейшем увеличении напряжения достигается потенциал разряда исследуемых ионов Еi, на электроде протекает электрохимическая реакция, и ток резко возрастает (участок II). Это фарадеевский ток, который увеличивается до некоторого предельного значения, после чего остается практически постоянным при дальнейшем росте потенциала. Возникает предельный ток диффузии Iпр (участок III).

Характеристиками классической вольтамперной кривой являются потенциал полуволны, диффузионный ток и наклон.

1. Потенциал полуволны, E1/2 (В) характеризует природу разряжающегося иона и непосредственно связан с величиной Е0 окислительно-восстановительной системы. Определив Е1/2, по справочным таблицам можно установить, ионы какого вещества участвуют в электрохимической реакции на рабочем электроде (качественный анализ).

2. Диффузионный ток, I (мкА). Если при регистрации вольтамперной кривой в ячейке присутствует большое количество (0.1 ? 1М) индифферентного электролита, величина протекающего через ячейку тока определяется скоростью диффузии ионов. Предельный диффузионный ток (Iпр, мкА) или пропорциональная ему высота волны (Н, мм) линейно зависят от концентрации ионов в растворе. Функциональная зависимость Iпр от концентрации определяемого иона (15) лежит в основе количественного анализа. Определив Iпд из вольтамперограммы, рассчитывают концентрацию интересующего вещества.

Iпр = Kc. (15)

3. Наклон вольтамперной кривой, ctg б (мВ). Для обратимого восстановления ионов зависимость между диффузионным током и потенциалом в любой точке восходящего участка волны описывается уравнением:

где I ? ток, мкА (или высота волны, мм) в любой точке восходящего участка волны; Iпр? ток, мкА (высота волны, мм) при 25 °С на участке потенциалов предельного диффузионного тока.

В координатах lg(I/(Iпр-I))?Е обратимая полярографическая волна выражается прямой с котангенсом угла наклона ctg a = 59/n мВ (при 25 °С). Сравнение экспериментальной и теоретической величины позволяет оценить обратимость электродного процесса. Если независимым методом доказана обратимость процесса, зависимость позволяет определить число электронов, участвующих в электродном процессе.

Характеристиками переменно-токовой вольтамперограммы являются потенциал пика, ток пика и ширина пика (рис. 4б).

1. Потенциал пика, Еп (В) характеризует природу разряжающегося иона. Для обратимого электродного процесса Еп=Е1/2.

2. Ток пика, Iп (мкА) или пропорциональная ему высота пика (Н, мм), линейно зависят от концентрации определяемого иона.

3. Ширина пика на половине его высоты, у (мВ) зависит от обратимости электродного процесса. Для обратимого электродного процесса у=90/п, для необратимого у>90/п.

Кондуктометрия

Кондуктометрический анализ основан на измерении электрической проводимости G (величины, обратной электрическому сопротивлению R) электрохимической ячейки, состоящей из помещенных в анализируемый раствор двух одинаковых инертных электродов с достаточно большой площадью. При этом электродные реакции либо являются вспомогательными и не учитываются, либо не протекают вовсе. Аналитическим сигналом может служить изменение сопротивления электролита, полного переходного сопротивления границы электрод? электролит или общего сопротивления электролитической ячейки.

Сопротивление ячейки зависит от электрической проводимости раствора и геометрии ячейки, определяемой площадью и формой электродов, расстоянием между ними и их относительным расположением. Чтобы исключить геометрический фактор из кондуктометрических измерений, по экспериментальным данным рассчитывают значения удельной или эквивалентной (молярной) проводимости.

Электрическая проводимость. Мерой способности растворов проводить электрический ток является электрическая проводимость G ? величина, обратная электрическому сопротивлению R. Так как

, (17)

то, (18)

где? удельное сопротивление (Ом см); s ? поперечное сечение, (см2); l ? длина проводника (расстояние между электродами) (см); ? удельная электрическая проводимость.

Удельная электрическая проводимость электролита (См см-1 - Сименс на сантиметр) ? это электрическая проводимость объема раствора, заключенного между двумя параллельными электродами площадью 1 см2 каждый и расположенными на расстоянии 1 см друг от друга.

Удельная электрическая проводимость зависит от количества переносящих электричество заряженных частиц и скорости их перемещения. В растворе гидратированные ионы находятся в беспорядочном тепловом движении. При наложении электрического поля возникает упорядоченное перемещение ионов к электродам с противоположным знаком заряда под действием силы, сообщающей им ускорение, но одновременно с возрастанием скорости их движения увеличивается и сопротивление среды. Через некоторое время скорость движения становится постоянной и для ионов i-го вида определяется формулой:

, (19)

где e ? элементарный электрический заряд (заряд электрона); zi ? количество элементарных электрических зарядов, переносимое одним ионом (зарядность иона); U ? разность потенциалов между электродами; l ? расстояние между электродами; R ? сопротивление среды направленному перемещению ионов.

Скорость движения при градиенте потенциала электрического поля U/l = 1 В/м называется подвижностью ионов ui (размерность м2 В-1 с-1)

, (20)

тогда:

. (21)

Подвижность u зависит от заряда, размера и степени гидратации ионов, вязкости раствора, температуры и других факторов. Ионы с большой гидратной оболочкой имеют меньшую электрическую подвижность, чем слабогидратированные ионы. Среди катионов наибольшей подвижностью обладает H+, среди анионов? OH-.

В зависимости от заряда, концентрации и скорости движения в электрическом поле, каждый вид ионов переносит определенное количество электричества, оцениваемое числом переноса.

Число переноса ti -- отношение количества электричества qi, перенесенного ионами i-го вида, к общему количеству электричества q, перенесенному всеми ионами, находящимися в растворе:

ti = qi/q; ti = 1.

Связь между удельной электрической проводимостью и концентрацией переносчиков заряда в растворе устанавливает выражение:

= Fzicivi., (22)

или для бинарного электролита:

= cF(z+u++z-u-), (23)

где? степень диссоциации, с? эквивалентная концентрация электролита, z и u ? соответственно заряд и скорость движения (м/с) катионов и анионов при напряженности электрического поля 1 В/м.

Эквивалентная (молярная) электрическая проводимость - мера электрической проводимости всех ионов, образующихся при диссоциации 1 моль-эквивалента (1 моль) электролита при данной концентрации раствора. Определяется как удельная электропроводность, отнесенная к числу эквивалентов (молей) вещества в 1 см3 раствора, заключенного между двумя электродами площадью 1 см2 каждый и находящихся на расстоянии 1 см

= 103/c, (24)

где c ? концентрация электролита, экв/л (моль/л).

Кондуктометрия является неселективным методом анализа, т.к. свой вклад в электрическую проводимость вносят все находящиеся в растворе ионы. Поэтому прямой кондуктометрический анализ обычно используется для измерения концентрации растворов бинарных электролитов или определения общей ионной силы раствора (минерализация природных вод, загрязненность сточных вод, контроль качества воды после очистки).

При кондуктометрическом титровании точка эквивалентности определяется по излому на кривой титрования, состоящей из двух линейных участков. Резкое изменение электрической проводимости наблюдается, когда в процессе титрования происходит изменение состава раствора и подвижности электроактивных ионов в результате образования малодиссоциированных или малорастворимых соединений. Точке эквивалентности соответствует минимум на кривой титрования.

Лабораторные работы

Работа № 1. Определение фторид - иона в природных водах с использованием ионоселективного эле к трода

Ионоселективный электрод на основе пластинки из монокристалла LaF3 имеет нернстовскую электродную функцию в интервале pF от 1 до 6. Рабочий интервал рН исследуемого раствора 4.5 ? 8.0. Электрод обладает уникальной селективностью и определению практически не мешают значительные количества ионов Cl-, Br-, NO3-, SO32-, SO42-. Более сильно влияет силикат-ион.

Приборы, посуда, реагенты

Иономер, рХ-метр.

Индикаторный электрод, фторид-селективный.

Магнитная мешалка.

Стеклянный стаканчик, 50 мл.

Мерные колбы на 50 мл, 5 шт.

Пипетка на 5 мл.

Фторид натрия, 0.1000 М стандартный раствор.

Нитрат калия, 1 М раствор.

Силикат натрия (бромид, хлорид, иодид калия, натрия).

0.1 М раствор.

Выполнение определения. Ознакомившись с инструкцией, включают прибор в сеть и прогревают в течение 15 ? 20 мин.

В мерных колбах на 50.0 мл последовательным разбавлением 0.1000 М стандартного раствора NaF готовят серию растворов (1.0Ч10-2, 1.0Ч10-3, 1.0Ч10-4, 1.0Ч10-5 и 1.0Ч10-6 M), создавая в каждой колбе постоянную концентрацию (0.1 М) сильного электролита KNO3 (табл. 1).

Таблица 1. Приготовление растворов сравнения NaF

Снимают зависимость потенциала индикаторного электрода от концентрации F-иона. Для этого в стакан вместимостью 50 мл наливают по 15 мл приготовленных растворов, опускают электроды, включают перемешивание и измеряют Е, последовательно переходя от меньшей концентрации к большей. При смене раствора поднимают держатель с электродами, подсушивают торец электрода фильтровальной бумагой и погружают электроды в стакан с новым раствором.

Величину Е фиксируют после установления равновесного потенциала. В разбавленных растворах время отклика фторид - селективного электрода возрастает и для концентрации 1Ч10-6 М составляет 2 - 3 мин. После окончания измерений мембрану ИСЭ тщательно промывают дистиллированной водой. Все растворы измеряют трижды и находят среднее значение Е. Результаты измерений записывают в табл. 2.

Таблица 2. Результаты измерения потенциала индикаторного электрода

№ раствора

Строят градуировочный график в координатах Е?pF и находят область линейной зависимости. Определяют крутизну электродной функции (угловой коэффициент наклона градуировочного графика) и сравнивают ее с теоретическим значением (59 мВ при 25°С для однозарядного иона при изменении активности в 10 раз). По графику определяют предел обнаружения фторид-ионов (cmin).

К контрольному раствору в мерной колбе прибавляют 4.5 мл 1М KNO3, разбавляют водой до метки и перемешивают. Измеряют Е контрольного раствора и по градуировочному графику определяют содержание фторида. Полученное значение сравнивают с истинным значением и находят ошибку определения.

Определение коэффициентов селективности электрода по отношению к фторид-иону в присутствии посторонних анионов (SiO32-, Сl-, Вг-, I-) методом смешанных растворов.

Готовят серию растворов сравнения NaF с концентрацией 1.0Ч10-2, 5.0Ч10-3, 1.0Ч10-3, 1.0Ч10-4, 1.0Ч10-5 М, используя в качестве фонового электролита 0.1 М растворы Na2SiO3, NaCl, NaBr или NaI. Проводят измерения, строят градуировочный график в координатах Е?pF и находят концентрацию фторид-иона, соответствующую отклонению электродной функции от линейной зависимости. Рассчитывают коэффициент селективности по формуле:

, (1)

где cF и cX; zF и zX ? соответственно концентрации и заряды основного и мешающего ионов, отвечающие точке перегиба на графике Е?рci.

После окончания работы выключают прибор, промывают электроды дистиллированной водой и оставляют погруженными в воду.

Работа № 2. Определение концентрации нитрат-ионов в водном растворе методом д о бавок

Определение содержания нитратов представляет важную аналитическую задачу при анализе объектов окружающей среды, т.к. избыточное содержание нитратов в почве и природных водах оказывает вредное воздействие на живые организмы.

ИСЭ для определения NO3- создан на основе анионита из нитратов аминов и четвертичных аммониевых оснований. Мембрана содержит полимерное связующее (поливинилхлорид), пластификатор (эфиры фталевой, фосфорной, себационовой и других кислот), ионообменник (соль аммониевого или арсониевого основания). Во внутренней полости электрода находится хлорсеребряный электрод сравнения, погруженный в раствор 1.0Ч10-1 М KNO3, содержащий 1.0Ч10-3 М KCl.

Определению не мешают 100-кратные количества Cl-, 500-кратные? НСО3- и СН3СОО-, 1000-кратные? F- и SO42-.

Приборы, посуда, реагенты

Иономер, рХ-метр.

Индикаторный электрод, NO3-- селективный.

Электрод сравнения, хлоридсеребряный.

Магнитная мешалка.

Стеклянный стаканчик, 50 мл.

Мерные колбы на 50 мл, 5 шт.

Пипетки на 2 и 5 мл с делениями, пипетка Мора на 20 мл.

Нитрат калия, 1.0000 М стандартный раствор.

Выполнение определения. Включают измерительный прибор в сеть и выжидают 20 ? 25 мин.

Содержание нитратов определяют методом добавок, используемым при анализе сложных объектов, точный химический состав которых неизвестен. Предварительно необходимо установить крутизну электродной функции.

В колбах вместимостью 50.0 мл методом последовательного разбавления готовят серию растворов KNO3 (от 10-1 до 10-5 М). Для этого в колбу № 1 вводят аликвотную часть (5.00 мл) 1 М KNO3, разбавляют водой до метки и тщательно перемешивают. В колбу № 2 пипеткой вносят 5.00 мл из колбы № 1 и разбавляют до метки водой и т. д.

В стаканчик вместимостью 50 мл вносят аликвотную часть (15 ? 20 мл) раствора, опускают электроды, включают перемешивание и измеряют Е, последовательно переходя от меньшей концентрации к большей. При смене раствора держатель штатива с электродами поднимают, осторожно удаляют с боковой поверхности электродов и с мембраны избыток влаги фильтровальной бумагой и погружают электроды в новый раствор. Результаты измерений оформляют в виде табл. 1

Таблица 1

Измерение потенциала электрода в растворе нитрат-ионов

№ раствора

Значение ионной силы рассчитывают для каждого раствора, величины коэффициентов активности для соответствующей ионной силы находят в справочных таблицах. Значение pNO3 вычисляют как отрицательный логарифм активности нитрат-иона:

pNO3 = -lg aNO3-,

Строят график зависимости Е?pNO3 и определяют крутизну S электродной функции (в мВ). Полученное значение S используют в расчетной формуле (1) (как оно отличается от теоретического значения?).

Для определения концентрации нитрат-иона в контрольном образце необходимо измерить Е до и после добавок стандартного раствора KNO3. Для этого аликвоту анализируемого раствора 20.00 мл помещают пипеткой в сухой стакан, опускают в него электроды и измеряют Е. Затем, пользуясь пипеткой на 1 - 2 мл, добавляют по 2 - 3 капли стандартного раствора KNO3. После каждой добавки раствор перемешивают, следя за тем, чтобы стержень магнитной мешалки не касался поверхности мембраны электрода во избежание ее повреждения. Измеряют Е и фиксируют изменение по отношению к анализируемому раствору. Добиваются изменения Е не менее чем на 30 мВ, вводя по 2 - 3 добавки к одной порции образца.

Рассчитывают результат определения по нескольким добавкам, зная объем Vst добавленного раствора с концентрацией cst, объем анализируемого раствора Vх (20.00 мл) и пренебрегая разбавлением, по формуле (1):

(1)

где ДЕ? наблюдаемое изменение потенциала в мВ после добавки; S ? крутизна электродной функции в мВ, установленная по графику. При необходимости учета разбавления используют формулу (2):

. (2)

Вычисляют содержание нитрат-ионов в мг в анализируемом растворе (MNO3- = 62.01). Находят ошибку определения, сравнивая измеренное и истинное содержание нитрат-ионов в контрольном растворе.

Работа № 3. Определение активности ионов натрия (калия)

Для определения ионов щелочных металлов (Na, К) и аммония используют стеклянные электроды различных марок, а также электроды с поливинилхлоридными пластифицированными мембранами на основе нейтральных переносчиков, в частности природных антибиотиков (валиномицина, лазалоцида, нонактина и других) либо синтетических макроциклических соединений.

Электроды из Na-селективных сортов стекла имеют высокую избирательность по отношению к другим однозарядным ионам, за исключением Н+ и Ag+. Для измерения активности указанных ионов в водных растворах стеклянные и пластифицированные ИСЭ выдерживают не менее 1 сут. в 0.1 М растворах хлоридов элементов.

Приборы, посуда, реагенты

Иономер, рХ-метр.

Индикаторный электрод, Na - селективный.

Электрод сравнения, хлорсеребряный.

Магнитная мешалка.

Стеклянный стаканчик, 50 мл.

Мерные колбы на 50 мл, 5 шт.

Пипетка на 5 мл.

Хлорид натрия, 1.0000 М стандартный раствор.

Хлорид калия, 0.1 М раствор.

Буферный раствор, содержащий трис(гидроксиметил)-

аминометан (ТРИС), 1Ч10-3М раствор, рН 8.5 - 9.0.

Выполнение определения. Включают прибор в сеть и прогревают 15?20 мин.

В колбах вместимостью 50.0 мл готовят растворы с концентрациями от 1.0Ч10-1 до 1.0Ч10-5 М NaCl последовательным разбавлением исходного раствора тpuc-буферным раствором для того, чтобы значение рН исследуемых растворов оставалось постоянным.

В чистый стакан пипеткой переносят аликвотную часть раствора, опускают и центрируют электроды и помещают стержень магнитной мешалки. Включают перемешивание и измеряют Е, переходя от раствора с меньшей концентрацией к раствору с большей концентрацией. При смене растворов электроды промывают водой, осторожно подсушивают мембрану ИСЭ фильтровальной бумагой и опускают в следующий раствор. Результаты измерения оформляют в виде табл. 1.

Для каждого раствора рассчитывают значение ионной силы м, величины коэффициентов активности для соответствующей ионной силы находят в справочных таблицах. Значение pNa вычисляют как отрицательный логарифм активности иона: pNa = -lg aNa.,

Таблица 1

Результаты измерений потенциала индикаторного электрода

№ раствора

Строят градуировочный график в координатах Е?pNa и по нему определяют крутизну S (в мВ) и предел обнаружения. Измеряют контрольный раствор и по графику определяют в нем содержание натрия.

Определяют коэффициенты селективности ИСЭ к иону натрия относительно посторонних катионов, пользуясь методом раздельных растворов. Для этого измеряют потенциал ИСЭ в 0.1000 М растворе NaCl (Ei), а затем, промыв мембрану электрода дистиллированной водой, погружают его в 0.1 М раствор КС1 (NH4C1, HC1) и вновь измеряют потенциал (Ек). Вычисляют Ki/k пользуясь формулой (1):

, (1)

где S ? экспериментально найденная крутизна электродной функции.

По окончании работы электроды промывают дистиллированной водой и оставляют ИСЭ в растворе 10-3 М хлорида натрия в буферном растворе (ТРИС, рН 9).

Работа № 4. Определение NaOH и Na2CO3 ( при совместном присутствии в растворе ) потенциометрическим титрован и ем

Потенциометрическое титрование основано на регистрации изменения потенциала индикаторного электрода в процессе химической реакции между определяемым веществом и титрантом. Конечную точку титрования (точку эквивалентности, ТЭ) находят по скачку потенциала, отвечающему моменту завершения реакции.

Приборы, посуда, реагенты

Иономер, рН-метр.

Индикаторный электрод, стеклянный.

Электрод сравнения, хлоридсеребряный.

Магнитная мешалка.

Стеклянный стаканчик, 50 мл.

Мерные колбы на 50 и 100 мл, коническая колба на 100 мл.

Бюретка на 25 мл, воронка, бюкс.

Пипетки на 2 мл, 20 мл.

Соляная кислота концентрированная.

Тетраборат натрия Na2B4O7Ч10 H2O кристаллический.

Выполнение определения. Прибор приводят в рабочее состояние согласно описанию.

1. Уточнение титра 0.1 н раствора HCl. Рассчитывают количество соляной кислоты (мл), необходимое для приготовления 100 мл 0.1 н раствора HCl. В мерную колбу на 100 мл отбирают пипеткой необходимое количество кислоты, добавляют до метки дистиллированную воду (без СО2) и тщательно перемешивают раствор.

Рассчитывают величину навески, необходимую для приготовления 50 мл 0.05 н раствора тетрабората натрия. Взвешивают соль (с точностью до четвертого знака после запятой) в бюксе, переносят в мерную колбу и растворяют в небольшом количестве дистиллированной воды (без СО2), предварительно подогретой в конической колбе. Доводят до метки той же водой при комнатной температуре и тщательно перемешивают. Вычисляют нормальность приготовленного раствора.

Техника потенциометрического титрования

1. В чистый стакан вместимостью 50 мл пипеткой переносят аликвотную часть раствора тетрабората натрия (20 мл).

2. Опускают в стакан индикаторный электрод и электрод сравнения, центрируют их. Помещают стержень магнитной мешалки.

3. Бюретку заполняют титрантом и закрепляют в штативе так, чтобы ее носик был опущен в стакан, но не соприкасался с электродами, стенками стакана и поверхностью титруемого раствора.

4. Включают перемешивание и проводят ориентировочное титрование, прибавляя из бюретки по 1 мл раствора титранта и измеряя рН после каждой его порции.

Подобные документы

    Хроматоргафический анализ - метод идентификации химических элементов и их соединений. Физико-химические методы. Классификация хроматографических методов. Краткие сведения о хроматографических методах анализа. Виды хроматографического анализа.

    реферат , добавлен 01.06.2008

    Использование в физико-химических методах анализа зависимости физических свойств веществ от их химического состава. Инструментальные методы анализа (физические) с использование приборов. Химический (классический) анализ (титриметрия и гравиметрия).

    реферат , добавлен 24.01.2009

    Зависимость аналитического сигнала от содержания определяемого вещества. Примеры инструментальных методов анализа. Типичные градуировочные графики для инструментальных методов кондуктометрического анализа. Электропроводность растворов электролитов.

    методичка , добавлен 19.03.2012

    Классификация электрохимических методов анализа. Потенциометрическое определение концентрации вещества в растворе. Принцип кондуктометрии. Типы реакций при кондуктометрическом титровании. Количественный полярографический анализ. Прямая кулонометрия.

    курсовая работа , добавлен 04.04.2013

    Необходимость идентификации вещества и измерение количественной оценки его содержания. Качественный анализ для химической идентификации атомов, молекул, простых или сложных веществ и фаз гетерогенной системы. Классификация методов количественного анализа.

    лекция , добавлен 16.01.2011

    Общие понятия, условия проведения и классификация электрохимических методов анализа. Потенциометрический анализ (потенциометрия). Амперометрическое титрование (потенциометрическое поляризационное титрование). Количественный полярографический анализ.

    реферат , добавлен 01.10.2012

    Электрохимические методы основаны на измерении электрических параметров электрохимических явлений, возникающих в исследуемом растворе. Классификация электрохимических методов анализа. Потенциометрическое, кондуктометрическое, кулонометрическое титрование.

    реферат , добавлен 07.01.2011

    Классификация инструментальных методов анализа по определяемому параметру и способу измерения. Сущность потенциометрического, амперометрического, хроматографического и фотометрического титрования. Качественное и количественное определение хлорида цинка.

    контрольная работа , добавлен 29.01.2011

    Хроматографический метод как разновидность физико-химических методов анализа, позволяющий определять содержание отдельных компонентов в смесях, концентрировать, идентифицировать их. Краткие сведения, классификация, виды. Области практического применения.

    реферат , добавлен 05.06.2008

    Хроматографический и оптический методы анализа. Определение состава смеси органических спиртов, содержания ионов металлов в растворе, содержания лактозы (сахарозы). Определение содержания карбоната и гидрокарбоната в смеси методом прямого титрования.

1. Классификация инструментальных методов анализа по измерительному параметру и способу измерения. Примеры инструментальных методов анализа для качественного анализа веществ

В одном из способов классификации инструментальных (физико-химических) методов в основу анализа положена природа измеряемого физического параметра анализируемой системы и способа его измерения; величина этого параметра является функцией количества вещества. В соответствии с этим все инструментальные методы делятся на пять больших групп:

Электрохимические;

Оптические;

Хроматографические;

Радиометрические;

Масс-спектрометрические.

Электрохимические методы анализа основаны на использовании электрохимических свойств анализируемых веществ. К ним относятся следующие методы.

Электрогравиметрический метод - основан на точном измерении массы определяемого вещества или его составных частей, которые выделяются на электродах при прохождении постоянного электрического тока через анализируемый раствор.

Кондуктометрический метод - основан на измерении электрической проводимости растворов, которая изменяется в результате протекающих химических реакций и зависит от свойств электролита, его температуры и концентрации растворенного вещества.

Потенциометрический метод - основан на измерении потенциала электрода, погруженного в раствор исследуемого вещества. Потенциал электрода зависит от концентрации соответствующих ионов в растворе при постоянных условиях измерений, которые проводят с помощью приборов потенциометров.

Полярографический метод - основан на использовании явления концентрационной поляризации, возникающей на электроде с малой поверхностью при пропускании электрического тока через анализируемый раствор электролита.

Кулонометрический метод - основан на измерении количества электричества, израсходованного на электролиз определенного количества вещества. В основе метода лежит закон Фарадея.

Оптические методы анализа основаны на использовании оптических свойств исследуемых соединений. К ним относятся следующие методы.

Эмиссионный спектральный анализ - основан на наблюдении линейчатых спектров, излучаемых парами веществ при их нагревании в пламени газовой горелки, искры или электрической дуге. Метод дает возможность определять элементный состав веществ.

Абсорбционный спектральный анализ в ультрафиолетовой, видимой и инфракрасной областях спектра. Различают спектрофотометрический и фотоколориметрический методы. Спектрофотометрический метод анализа основан на измерении поглощения света (монохроматического излучения) определенной длины волны, которая соответствует максимуму кривой поглощения вещества. Фотоколориметрический метод анализа основан на измерении светопоглощения или определения спектра поглощения в приборах - фотоколориметрах в видимом участке спектра.

Рефрактометрия - основана на измерении коэффициента преломления.

Поляриметрия - основана на измерении вращения плоскости поляризации.

Нефелометрия - основана на использовании явлений отражения или рассеивания света неокрашенными частицами, взвешенными в растворе. Метод дает возможность определять очень малые количества вещества, находящиеся в растворе в виде взвеси.

Турбидиметрия - основанная на использовании явлений отражения или рассеивания света окрашенными частицами, которые находятся во взвешенном состоянии в растворе. Свет, поглощенный раствором или прошедший через него, измеряют так же, как и при фотоколориметрии окрашенных растворов.

Люминесцентный или флуоресцентный анализ - основан на флуоресценции веществ, которые подвергаются облучению ультрафиолетовым светом. При этом измеряется интенсивность излучаемого или видимого света.

Пламенная фотометрия (фотометрия пламени) - основана на распылении раствора исследуемых веществ в пламени, выделении характерного для анализируемого элемента излучения и измерении его интенсивности. Метод используют для анализа щелочных, щелочноземельных и некоторых других элементов.

Хроматографические методы анализа основаны на использовании явлений избирательной адсорбции. Метод применяют в анализе неорганических и органических веществ для разделения, концентрирования, выделения отдельных компонентов из смеси, очистки от примесей.

Радиометрические методы анализа основаны на измерении радиоактивного излучения данного элемента.

Масс-спектрометрические методы анализа основаны на определении масс отдельных ионизированных атомов, молекул и радикалов, в результате комбинированного действия электрического и магнитного полей. Регистрацию разделенных частиц проводят электрическим (масс-спектрометрия) или фотографическим (масс-спектрография) способами. Определение проводят на приборах - масс-спектрометрах или масс-спектрографах.

Примеры инструментальных методов анализа для качественного анализа веществ: рентгено-флуоресцентный, хроматография, кулонометрия, эмиссионный, пламенная фотометрия и т.д.

2.

2. 1 Сущность потенциометрического титрования. Требования к реакциям. Примеры реакций окисления-восстановления, осаждения, комплексообразования и соответствующие им электродные системы. Графические способы опреде ления конечной точки титрования

Потенциометрическое титрование основано на определении эквивалентной точки по изменению потенциала на электродах, опущенных в титруемый раствор. При потенциометрическом титровании используют электроды как неполяризующиеся (без протекания через них тока), так и поляризующиеся (с протеканием через них тока).

В первом случае в процессе титрования определяется концентрация в растворе одного из ионов, для регистрации которого имеется подходящий электрод.

Потенциал Е х на этом индикаторном электроде устанавливается согласно уравнению Нернста. Например, для реакций окисления - восстановления уравнение Нернста выглядит следующим образом:

где Е х - потенциал электрода в данных конкретных условиях; A ок - концентрация окисленной формы металла; A восст - концентрация восстановленной формы металла; Е 0 - нормальный потенциал; R - универсальная газовая постоянная (8,314 дж/(град*моль)); Т - абсолютная температура; n - разность валентностей окисленной и восстановленной форм ионов металла.

Для образования электрической цепи в титруемый раствор помещают второй так называемый электрод сравнения, например каломельный, потенциал которого в процессе реакции остается постоянным. Потенциометрическое титрование на неполяризующихся электродах помимо упомянутых реакций окисления - восстановления используется также при реакциях нейтрализации. В качестве индикаторных электродов при реакциях окисления-восстановления применяют металлы (Pt, Wo, Mo). При реакциях нейтрализации применяют чаще всего стеклянный электрод, имеющий в широкой области характеристику, аналогичную водородному электроду. Для водородного электрода зависимость потенциала от концентрации ионов водорода выражается следующей зависимостью:

Или при 25°С:

При потенциометрическом титровании часто используют титрование не до определенного потенциала, а до определенной величины рН, например, до нейтральной среды рН=7. Несколько в стороне от общепринятых методов потенциометрического титрования (без протекания тока через электроды), рас смотренных выше, стоят методы потенциометрического титрования при постоянном токе с поляризующимися электродами. Чаще применяют два поляризующихся электрода, но иногда пользуются и одним поляризующимся электродом.

В отличие от потенциометрического титрования с неполяризующимися электродами, при котором ток через электроды практически не протекает, в данном случае через электроды (обычно платиновые) пропускается небольшой (около нескольких микроампер) постоянный ток, получаемый от источника стабилизированного тока. В качестве источника тока может служить высоковольтный источник питания (около 45 В) с последовательно включенным относительно большим сопротивлением. Измеряемая на электродах разность потенциалов резко возрастает при приближении реакции к эквивалентной точке вследствие поляризации электродов. Величина скачка потенциала может быть гораздо больше, чем при титровании при нулевом токе с неполяризующимися электродами.

Требования к реакциям при потенциометрическом титровании - это полнота прохождения реакции; достаточно большая скорость реакции (чтобы результаты не приходилось ждать, и была возможность автоматизации); получение в реакции одного четкого продукта, а не смеси продуктов, которые при различных концентрациях могут получаться.

Примеры реакций и соответствующие им электродные системы:

Окисление -восстановлени е :

Система электродов:

В обоих случаях используется система, которая состоит из платинового электрода и хлорсеребряного.

О саждени е :

Ag + + Cl - =AgClv.

Система электродов:

К омплексообразовани е :

Система электродов:

Графические способы определения конечной точки титрования. Принцип заключается в визуальном изучении полной кривой титрования. Если начертить зависимость потенциала индикаторного электрода от объема титранта, то на полученной кривой имеется максимальный наклон - т.е. максимальное значение ДE/ДV - который можно принять за точку эквивалентности. Рис. 2.1, показывающий именно такую зависимость, построен по данным табл. 2.1.

Таблица 2.1 Результаты потенциометрического титрования 3,737 ммоль хлорида 0,2314 F раствором нитрата серебра

Рис. 2.1 Кривые титрования 3,737 ммоль хлорида 0,2314 F раствором нитрата серебра: а - обычная кривая титрования, показывающая область вблизи точки эквивалентности; б - дифференциальная кривая титрования (все данные из табл. 2.1)

Метод Грана. Можно построить график ДE/ДV - изменение потенциала на объем порции титранта как функцию объема титранта. Такой график, полученный из результатов титрования, приведенных в табл. 2.1, показан на рис. 2.2.

Рис. 2.2 Кривая Грана, построенная по данным потенциометрического титрования, представленным в табл. 2.1

2.2 Задача : в ычислить потенциал платинового электрода в растворе сульфата железа (II), оттитрованного раствором перманганата калия на 50% и 100,1%; если концентрация ионов FeІ ? , H ? и MnO ?? равны 1 моль/дмі

Потенциал платинового электрода - электрода третьего рода - определяется природой сопряженной окислительно-восстановительной пары и концентрацией ее окисленной и восстановленной форм. В данном растворе имеется пара:

Fe 3+ + e - Fe 2+ ,

для которой:

Поскольку исходный раствор оттитрован на 50%, то /=50/50 и 1.

Следовательно, E = 0,77 + 0,058 lg1 = 0,77 В.

3. Амперометрическое титрование

3.1 Амперометрическое титрование, его сущность, условия. Типы кривых титрования в зависимости от природы титруемого вещества и титранта на примерах конкретных реакци й

Амперометрическое титрование. Для амперометрической индикации в титровании можно использовать ячейку такого же принципиального устройства, что и для прямой амперометрии. В этом случае метод называется амперометрическим титрованием с одним поляризованным электродом. В ходе титрования контролируют ток, обусловленный определяемым веществом, титрантом или продуктом реакции, при постоянном значении потенциала рабочего электрода, находящимся в области потенциалов предельного диффузионного тока.

В качестве примера рассмотрим осадительное титрование ионов Рb 2+ раствором хромата калия при различных потенциалах рабочего электрода.

Области предельных диффузионных токов окислительно-восстановительных пар Pb 2+ /Pb и СrО 4 2- /Сr(ОН) 3 расположены таким образом, что при потенциале 0 В хромат-ион уже восстанавливается, а ион Рb 2+ еще нет (этот процесс происходит лишь при более отрицательных потенциалах).

В зависимости от потенциала рабочего электрода можно получить кривые титрования различной формы.

а) Потенциал равен - 1В (рис. 3.1):

До точки эквивалентности протекающий через ячейку ток является катодным током восстановления ионов Рb 2+ . При добавлении титранта их концентрация уменьшается, и ток падает. После точки эквивалентности ток обусловлен восстановлением Cr(VI) до Сr(III), вследствие чего по мере добавления титранта катодный ток начинает возрастать. В точке эквивалентности (ф=1) на кривой титрования наблюдается резкий излом (на практике он бывает выражен слабее, чем на рис. 3.1).

б) Потенциал равен 0 В:

При этом потенциале ионы Рb 2+ не восстанавливаются. Поэтому до точки эквивалентности наблюдается лишь небольшой постоянный остаточный ток. После точки эквивалентности в системе появляются свободные хромат-ионы, способные к восстановлению. При этом по мере добавления титранта катодный ток возрастает, как и в ходе титрования при - 1В (рис. 3.1).

Рис. 3.1 Кривые амперометрического титрования Рb 2+ хромат-ионами при потенциалах рабочего электрода - 1В и 0 В

По сравнению с прямой амперометрией амперометрическое титрование, как и любой титриметрическии метод, характеризуется более высокой точностью. При этом метод амперометрического титрования более трудоемок. Наиболее широко применяются на практике методики амперометрического титрования с двумя поляризованными электродами.

Биамперометрическое титрование . Этот вид амперометрического титрования основан на использовании двух поляризуемых электродов - обычно платиновых, на которые подается небольшая разность потенциалов - 10-500 мВ. В этом случае прохождение тока возможно лишь при протекании обратимых электрохимических реакций на обоих электродах. Если хоть одна из реакций кинетически затруднена, происходит поляризация электрода, и ток становится незначительным.

Вольтамперные зависимости для ячейки с двумя поляризуемыми электродами приведены на рис. 3.2. В этом случае играет роль лишь разность потенциалов между двумя электродами. Значение потенциала каждого из электродов в отдельности остается неопределенным ввиду отсутствия электрода сравнения.

Рис 3.2 Вольтамперные зависимости для ячейки с двумя одинаковыми поляризуемыми электродами в случае обратимой реакции без перенапряжения (а ) и необратимой реакции с перенапряжением (б ).

В зависимости от степени обратимости электродных реакций можно получить кривые титрования различной формы.

а) Титрование компонента обратимой окислительно-восстановительной пары компонентом необратимой пары, например, иода тиосульфатом (рис. 3.3, а ):

I 2 + 2S 2 O 3 2- 2I - + S 4 O 6 2- .

До точки эквивалентности через ячейку протекает ток, обусловленный процессом:

2I - I 2 + e - .

Ток возрастает вплоть до величины степени оттитрованности, равной 0,5, при которой оба компонента пары І 2 /І - находятся в одинаковых концентрациях. Затем ток начинает убывать вплоть до точки эквивалентности. После точки эквивалентности вследствие того, что пара S 4 O 6 2- /S 2 O 3 2- является необратимой, наступает поляризация электродов, и ток прекращается.

б) Титрование компонента необратимой пары компонентом обратимой пары, например, ионов As(III) бромом (рис. 3.3, б ):

До точки эквивалентности электроды поляризованы, поскольку окислительно-восстановительная система As(V)/As(III) необратима. Через ячейку не протекает ток. После точки эквивалентности ток возрастает, поскольку в растворе появляется обратимая окислительно-восстановительная система Вr 2 /Вr - .

в) Определяемое вещество и титрант образуют обратимые окислительно-восстановительные пары: титрование ионов Fe(II) ионами Ce(IV) (рис. 3.3, в ):

Здесь поляризации электродов не наблюдается ни на каком этапе титрования. До точки эквивалентности ход кривой такой же, как на рис. 3.3, а , после точки эквивалентности - как на рис. 3.3, б .

Рис. 3.3 Кривые биамперометрического титрования иода тиосульфатом (a ), As(III) бромом (б ) и ионов Fe(II) ионами Ce(IV) (в )

3.2 Задача : в электрохимическую ячейку с платиновым микроэлектродом и электродом сравнения поместили 10,00 смі раствора NaCl и оттитровали 0,0500 моль/дмі раствором AgNO 3 объёмом 2,30 смі. Рассчитать содержание NaCl в растворе (%)

В растворе идет реакция:

Ag + + Cl - =AgClv.

V(AgNO 3) = 0,0023 (дм 3);

n(AgNO 3) = n(NaCl);

n(AgNO 3)=c(AgNO 3)*V(AgNO 3)=0,0500*0,0023=0,000115,

или 1,15*10 4 (моль).

n(NaCl) = 1,15*10 -4 (моль);

m(NaCl) = M(NaCl)* n(NaCl) = 58,5*1,15*10 -4 = 6,73*10 -3 г.

Плотность р-ра NaCl примем за 1 г/см 3 , тогда масса р-ра будет 10 г, отсюда:

щ(NaCl) = 6,73*10 -3 /10*100 % = 0,0673 %.

Ответ: 0,0673 %.

4. Хроматографические методы анализа

4.1 Фазы в хроматографических методах анализа, их характеристика. Основы жидкостной хроматографии

Метод жидкостной распределительной хроматографии предложен Мартином и Синджем, которые показали, что высота, эквивалентная теоретической тарелке, соответствующим образом наполненной колонки может достигать 0,002 см. Таким образом, колонка длиной 10 см может содержать порядка 5000 тарелок; высокой эффективности разделения можно ожидать даже от сравнительно коротких колонок.

Стационарная фаза. Наиболее распространенным твердым носителем в распределительной хроматографии служит кремневая кислота или силикагель. Этот материал сильно поглощает воду; таким образом, стационарной фазой является вода. Для некоторых разделений полезно в пленку из воды включить какой-либо буфер или сильную кислоту (или основание). В качестве стационарной фазы на силикагеле нашли также применение полярные растворители, такие, как алифатические спирты, гликоли или нитрометан. К другим носителям относятся диатомиты, крахмал, целлюлоза и толченое стекло; для смачивания этих твердых носителей используют воду и разные органические жидкости.

Подвижная фаза. Подвижной фазой может служить чистый растворитель или смесь растворителей, которые в заметной степени не смешиваются со стационарной фазой. Повысить эффективность разделения иногда можно непрерывным изменением состава смешанного растворителя по мере продвижения элюента (градиентное элюирование). В некоторых случаях разделение улучшается, если элюирование проводят рядом разных растворителей. Подвижную фазу выбирают главным образом эмпирически.

Современные приборы часто снабжены насосом для ускорения потока жидкости через колонку.

Основными параметрами ЖХ, характеризующими поведение вещества в колонке, являются время удерживания компонента смеси и удерживаемый объем. Время от момента ввода анализируемой пробы до регистрации максимума пика называют временем удерживания (элюирования) t R . Время удерживания складывается из двух составляющих - времени пребывания вещества в подвижной t 0 и неподвижной t s фазах:

t R .= t 0 + t s . (4.1)

Значение t 0 фактически равно времени прохождения через колонку адсорбируемого компонента. Значение t R не зависит от количества пробы, но зависит от природы вещества и сорбента, а также упаковки сорбента и может меняться от колонки к колонке. Поэтому для характеристики истинной удерживающей способности следует ввести исправленное время удерживания t? R :

t? R = t R - t 0 . (4.2)

Для характеристики удерживания часто используют понятие удерживаемого объема V R - объем подвижной фазы, который нужно пропустить через колонку с определенной скоростью, чтобы элюировать вещество:

V R = t R F, (4.3)

где F - объемная скорость потока подвижной фазы, см 3 с -1 .

Объем для вымывания несорбируемого компонента (мертвый объем) выражается через t 0 : V 0 = t 0 F , и включает в себя объем колонки, не занятый сорбентом, объем коммуникаций от устройства ввода пробы до колонки и от колонки до детектора.

Исправленный удерживаемый объем V? R соответственно равен:

V? R = V R - V 0 . . (4.4)

При постоянных условиях хроматографирования (скорость потока, давление, температура, состав фаз) значения t R и V R строго воспроизводимы и могут быть использованы для идентификации веществ.

Любой процесс распределения вещества между двумя фазами характеризуют коэффициентом распределения D . Величина D отношением c s /c 0 , где с т и с 0 - концентрации вещества в подвижной и неподвижной фазах соответственно. Коэффициент распределения связан с хроматографическими параметрами.

Характеристикой удерживания является также коэффициент емкости k" , определяемый как отношение массы вещества в неподвижной фазе к массе вещества в подвижной фазе: k" = m н /m п . Коэффициент емкости показывает, во сколько раз вещество дольше находится в неподвижной фазе, чем в подвижной. Величину k" вычисляют из экспериментальных данных по формуле:

Важнейшим параметром хроматографического разделения является эффективность хроматографической колонки, количественной мерой которой служат высота Н, эквивалентная теоретической тарелке, и число теоретических тарелок N.

Теоретическая тарелка - это гипотетическая зона, высота которой соответствует достижению равновесия между двумя фазами. Чем больше теоретических тарелок в колонке, т.е. чем большее число раз устанавливается равновесие, тем эффективнее колонка. Число теоретических тарелок легко рассчитать непосредственно из хроматограммы, сравнивая ширину пика w и время пребывания t R компонента в колонке :

Определив N и зная длину колонки L , легко вычислить Н :

Эффективность хроматографической колонки также характеризует симметричность соответствующего пика: чем более симметричен пик, тем более эффективной является колонка. Численно симметричность выражают через коэффициент симметрии K S , который может быть определен по формуле:

где b 0.05 - ширина пика на одной двадцатой высоты пика; А - расстояние между перпендикуляром, опущенным из максимума пика, и передней границей пика на одной двадцатой высоты пика.

Для оценки воспроизводимости хроматографического анализа используют относительное стандартное отклонение (RSD), характеризующее рассеяние результатов в выборочной совокупности:

где n - количество параллельных хроматограмм; х - содержание компонента в пробе, определенное путем расчета площади или высоты соответствующего пика на хроматограмме; - среднее значение содержания компонента, рассчитанное на основании данных параллельных хроматограмм; s 2 - дисперсия полученных результатов.

Результаты хроматографического анализа считаются вероятными, если выполняются условия пригодности хроматографической системы:

Число теоретических тарелок, рассчитанное по соответствующему пику, должно быть не менее требуемого значения;

Коэффициент разделения соответствующих пиков должен быть не менее требуемого значения;

Относительное стандартное отклонение, рассчитанное для высоты или площади соответствующего пика, должно быть не более требуемого значения;

Коэффициент симметрии соответствующего пика должен быть в требуемых пределах.

4.2 За дача : р ассчитать методом внутреннего стандарта содержание анализируемого вещества в пробе (в г и %), если при хроматографировании получены следующие данные: при калибровке: qВ=0,00735, SВ =6,38 смІ, qСТ=0,00869 г, SСТ=8,47 смІ , -при анализе: SВ=9,38 смІ, VВ=47 ммі, qСТ=0,00465 г, SСТ=4,51 смІ

SСТ/SВ = k*(qСТ/ qВ);

k = (SСТ/SВ)/(qСТ/ qВ) = (8,47/6,38)/(0,00869/0,00735) = 1,123;

qВ = k*qСТ*(SВ/SСТ) = 1,123*0,00465*(9,38/4,51) = 0,01086 г.

x, % = k*r*(SВ/SСТ)*100;

r = qСТ/ qВ = 0,00465/0,01086 = 0,4282;

x, % = 1,123*0,4282*(9,38/4,51) = 100%.

5. Фотометрическое титрование

5.1 Фотометрическое титрование. Сущность и условия титрования. Кривые титрования. Преимущества фотометрического титрования в сравнении с прямой фотометрией

Фотометрические и спектрофотометрические измерения можно использовать для фиксирования конечной точки титрования. Конечная точка прямого фотометрического титрования появляется в результате изменения концентрации реагента и продукта реакции или обоих одновременно; очевидно, по меньшей мере, одно из этих веществ должно поглощать свет при выбранной длине волны. Косвенный метод основан на зависимости оптической плотности индикатора от объема титранта.

Рис. 5.1 Типичные кривые фотометрического титрования. Молярные коэффициенты поглощения определяемого вещества, продукта реакции и титранта обозначены символами е s , е p , е t соответственно

Кривые титрования . Кривая фотометрического титрования представляет собой график зависимости исправленной оптической плотности от объема титранта. Если условия выбраны правильно, кривая состоит из двух прямолинейных участков с разным наклоном: один из них соответствует началу титрования, другой - продолжению за точкой эквивалентности. Вблизи точки эквивалентности часто наблюдается заметный перегиб; конечной точкой считают точку пересечения прямолинейных отрезков после экстраполяции.

На рис. 5.1 приведены некоторые типичные кривые титрования. При титровании непоглощающих веществ окрашенным титрантом с образованием бесцветных продуктов в начале титрования получается горизонтальная линия; за точкой эквивалентности оптическая плотность быстро растет (рис. 5.1, кривая а ). При образовании окрашенных продуктов из бесцветных реагентов, наоборот, сначала наблюдается линейный рост оптической плотности, а затем появляется область, в которой поглощение не зависит от объема титранта (рис. 5.1, кривая б ). В зависимости от спектральных характеристик реагентов и продуктов реакции возможны также кривые других форм (рис. 5.1).

Чтобы конечная точка фотометрического титрования была достаточно отчетливой, поглощающая система или системы должны подчиняться закону Бера; в противном случае нарушается линейность отрезков кривой титрования, необходимая для экстраполяции. Необходимо, далее, ввести поправку на изменение объема путем умножения оптической плотности на множитель (V+v)/V, где V - исходный объем раствора, a v - объем добавленного титранта.

Фотометрическое титрование часто обеспечивает более точные результаты, чем прямой фотометрический анализ, так как для определения конечной точки объединяются данные нескольких измерений. Кроме того, при фотометрическом титровании присутствием других поглощающих веществ можно пренебречь, поскольку измеряется только изменение оптической плотности.

5.2 Задача : н авеску дихромата калия массой 0,0284 г растворили в мерной колбе вместимостью 100,00 смі. Оптическая плотность полученного раствора при л max =430 нм равна 0,728 при толщине поглощённого слоя 1 см. вычислить молярную и процентную концентрацию, молярный и удельный коэффициенты поглощения этого раствора

где - оптическая плотность раствора; е - молярный коэффициент поглощения вещества, дм 3 *моль -1 *см -1 ; с - концентрация поглощающего вещества, моль/дм 3 ; l - толщина поглощающего слоя, см.

где k - удельный коэффициент поглощения вещества, дм 3 *г -1 *см -1 .

n(K 2 Cr 2 O 7) = m(K 2 Cr 2 O 7)/ M(K 2 Cr 2 O 7) = 0,0284/294 = 9,67*10 -5 (моль);

c(K 2 Cr 2 O 7) = 9,67*10 -5 /0,1 = 9,67*10 -4 (моль/л);

Плотность р-ра K 2 Cr 2 O 7 примем за 1 г/см 3 , тогда масса р-ра будет 100 г, отсюда:

щ(NaCl) = 0,0284/100*100 % = 0,0284 %.

е = D/cl =0,728/9,67*10 -4 *1 = 753 (дм 3 *моль -1 *см -1).

k = D/cl =0,728/0,284 *1 = 2,56(дм 3 *г -1 *см -1).

6. Описать и объяснить возможность использования инструментальных методов анализа (оптических, электрохимических, хроматографических) для качественного и количественного определения хлорида цинка

Хлорид ZnCl 2 ; M=136,29; бц. триг., расплыв; с=2,91 25 ; tпл=318; tкип=732; С°р=71,33; S°=111,5; ДН°=-415,05; ДG°=-369,4; ДНпл=10,25; ДНисп=119,2; у=53,83 20 ; 53,6 400 ; 52,2 700 ; р=1 428 ; 10 506 ; s=208 0 ; 272 10 ; 367 20 ; 408 25 ; 438 30 ; 453 40 ; 471 50 ; 495 60 ; 549 80 ; 614 100 ; х.р.эф.; р.эт. 100 12,5 , ац. 43,5 18 ; пир. 2,6 20 ; н.р.ж. NH 3 .

Хлорид цинка ZnCl 2 в наибольшей мереизученный из галогенидов, получается растворением цинковой обманки, окиси цинка или металлического цинка в соляной кислоте. Безводный хлорид цинка представляет собой белый зернистый порошок, состоящий из гексагонально-ромбоэдрических кристаллов, легко плавится и при быстром охлаждении застывает в виде прозрачной массы, похожей на фарфор. Расплавленный хлорид цинка довольно хорошо проводит электрический ток. При прокаливании хлорид цинка улетучивается, его пары конденсируются в виде белых игл. Он очень гигроскопичен, но вместе с тем его легко получить безводным. Хлорид цинка кристаллизуется без воды при температуре выше 28°С, а из концентрированных растворов он может быть выделен безводным даже при 10°С. В воде хлорид цинка растворяется с выделением большого количества тепла (15,6 ккал/моль). В разбавленных растворах хлорид цинка хорошо диссоциирует на ионы. Ковалентный характер связи в хлориде цинка проявляется в хорошей растворимости его в метиловом и этиловом спиртах, ацетоне, диэтиловом эфире, глицерине, уксусно-этиловом эфире и других кислородосодержащих растворителях, а также диметилформамиде, пиридине, анилине и других азотосодержащих соединениях основного характера.

Хлорид цинка склонен к образованию комплексных солей, отвечающих общим формулам от Me до Me 4 , однако в наибольшей мерераспространенными и устойчивыми являются соли, в которых около атома цинка координируются четыре аниона хлора, и состав большинства солей соответствует формуле Me 2 . Как показало изучение Раман-спектров, в растворах самого хлорида цинка в зависимости от его концентрации могут присутствовать ионы 2+ , ZnCl + (ад), 2- , и не обнаружены ионы - или 2- . Известны и смешанные комплексы, с анионами нескольких кислот. Так, потенциометрическим методам было доказано образование сульфатно-хлоридных комплексов цинка в растворах. Были обнаружены смешанные комплексы: 3- , 4 , 5- .

Количественно и качественно ZnCl 2 можно определить по Zn 2+ . Количественно и качественно можно его определить фотометрическим методом по спектру поглощения. Например, с такими реагентами как дитизон, мурексид, арсазен и т.д.

Спектральное определение цинка . Очень удобны для обнаружения цинка спектральные методы анализа. Анализ проводится по группе из трех линий: 3345, 02 I; 3345,57 I 3345,93 I А, из которых первая в наибольшей мереинтенсивная, или по паре линий: 3302,59 I и 3302,94 I А.

При контроле загрязнения окружающей среды аналитические методы должны позволять проводить определение как следовых количеств элементов (на уровне n·10 -3 -n·10 -7 %), так и при высоких уровнях загрязнения, причем желательно одновременно, в разнообразных объектах, отличающихся физическими свойствами и химическим составом.

Когда какой-либо метод анализа сравнивается с другими, необходимо принимать во внимание ряд факторов, в совокупности характеризующих метод. К ним относятся:

    область применения - объекты анализа и номенклатура веществ (неорганических и органических), определение которых возможно с использованием данного метода;

    рабочий диапазон определяемых концентраций – интервал, в котором возможно определение компонента без применения дополнительных стадий разбавления или концентрирования;

    селективность определения – возможность определения интересующего вещества в присутствии или при влиянии мешающих компонентов и факторов, например матричные эффекты;

    метрологические характеристики (чувствительность определения, пределы обнаружения, воспроизводимость и правильность получаемых результатов измерений и т.п.);

    способность к распознаванию различных физико-химических форм контролируемых веществ в различных матрицах, например, ионы в разном валентном состоянии;

    производительность оборудования , пригодность для выполнения массовых измерений;

    аппаратурное оснащение - сложность аппаратурного оснащения и его стоимость, возможность применения в производственных и полевых условиях;

    требования к подготовке и квалификации персонала (лаборант, инженер, необходимость специальной подготовки).

Методы, которые одинаково удовлетворяли бы всем вышеперечисленным требованиям, пока не разработаны, однако основные условия могут быть соблюдены при использовании современных физико-химических методов анализа и их комбинаций.

    1. Характеристики наиболее распространенных инструментальных методов анализа

Электроаналитические (электрохимические) методы. В их основе лежат электрохимические процессы в растворах. Эти методы давно известны и часто находят применение при повседневном контроле объектов окружающей среды, имеют преимущества с точки зрения низкой стоимости аппаратурного оснащения и необходимых расходов на эксплуатацию приборов. Преимущества электрохимических методов анализа:

Высокая чувствительность и селективность, быстрота отклика на изменение состава анализируемого объекта;

Большая номенклатура определяемых химических элементов и веществ;

Широкие интервалы измеряемых концентраций - от десятков % до n*10 -8 %;

Правильность и высокая воспроизводимость результатов (относительное стандартное отклонение результатов анализа в большинстве ЭМА менее 0.3);

Возможность определения наряду с валовым содержанием и физико-химических форм определяемых элементов;

Простота аппаратурного оформления, доступность аппаратуры и малая стоимость анализа;

Возможность использования в лабораторных, производственных и полевых условиях, легкость автоматизации и дистанционного управления.

Представляют область аналитической химии, весьма перспективную для усовершенствования аппаратурного оформления и автоматизации с помощью микропроцессоров.

Таблица 1 Классификация инструментальных методов анализа

Название метода и его варианты

Определяемые компоненты

Предел обнаружения, мг/л (мг/кг)

Диапазон линейности

Электроаналитические методы

Вольтамперометрия (полярография)

ионы металлов и их связанные формы, газы

специф. но ср. чувств.

Потенциометрия

неорганические ионы

Ионометрия с ионоселективными электродами

неорганические ионы

Кулоно- и кондуктометрия

неорганич. соединения, газы

Спектральные методы анализа

Молекулярная спектрометрия

Спектрофотометрия в видимой области

неорганические и органические соединения

просты и шир.прим.

УФ-спектрофотометрия

неорг. и органические в-ва

ИК-спектрометрия

КР-спетрометрия

идентификация орг. веществ

высокоспец

Атомная спектрометрия

Атомно-абсорбционная спектрометрия

химические элементы, главным образом металлы

Атомно-эмиссионная спектрометрия

более 70 химических элементов

Атомная флуоресцентная спектрометрия

органические вещества и металлоорганические комплексы

Радиоспектроскопические методы

Электронный парамагнитный резонанс (ЭПР)

Макрокомпоненты, свободные радикалы.

высокоспецифичны,

Ядерный магнитный резонанс (ЯМР)

органические соединения, содержащие ядра Н, С, F, P

малочувствительны.

Масс-спектрометрические

Масс-спектрометрия

Следы элементов

Хроматографические методы

Газовая хроматография

газы, летучие органические соединения

Зависит от типа

высокоспецифичны,.

Газожидкостная хроматограф.

органические соединения

детектора

Высокоэффективная жидкостная хроматография

нелетучие органические соединения

применяются.

Ядерно-физические методы

Нейтронно-активационный анализ

химические элементы, за исключением легких

требуют спец.

-, - и - радиометрия

радионуклиды

-, - и - спектрометрия

* - сильно зависит от определяемого элемента; ** - зависит от используемого детектора

Недостатки - эффект взаимного влияния элементов, невозможность многоэлементного определения, влияние органических веществ.

Спектральные методы анализа основаны на использовании взаимодействия атомов или молекул определяемых веществ с электромагнитным излучением широкого диапазона энергий. В порядке уменьшения энергии, это могут быть: гамма кванты, рентгеновское излучение, ультрафиолетовое и видимое, инфракрасное, микроволновое и радиоволновое излучение.

Взаимодействие молекул или атомов вещества с различными формами энергии находит проявление в трех тесно связанных друг с другом спектроскопических явлениях - эмиссии, адсорбции и флуоресценции, которые, так или иначе, используются в аналитической технике. Аналитическим сигналом может быть испускание или поглощение излучения веществом, поэтому различают два вида спектрального анализа: абсорбционную спектроскопию (использует спектры поглощения) и эмиссионную спектроскопию (спектры испускания).

Спектральные методы анализа начали развиваться еще с середины XIX века и к настоящему времени приобрели всеобщее распространение в качественном и количественном анализе. Широкое применение спектральных методов анализа обусловлено их универсальностью, избирательностью, низкими пределами обнаружения, экспрессностью, возможностью автоматизации, как отдельных стадий, так и всего процесса анализа в целом. Современные спектральные приборы имеют автоматизированные системы ввода проб, встроенные микропроцессоры, которые управляют процессом проведения анализа, обрабатывают данные эксперимента и выдают их в удобной для потребителя форме.

К группе спектральных методов анализа относятся:

    молекулярно-абсорбционный спектральный анализ в видимой, УФ- и ИК- области;

    метод анализа по спектрам комбинационного рассеивания света;

    люминесцентный или флуоресцентный анализы;

    атомно-эмиссионный, атомно-абсорбционный и атомно-флуоресцентный анализы;

    радиоспектроскопические методы анализа (ЭПР- спектроскопия, ЯМР- спектроскопия).

Молекулярная спектрометрия . В зависимости от используемого энергетического диапазона оптические методы анализа делятся на спектроскопию в видимой и ультрафиолетовой областях спектра (диапазон длин волн от 200 до 700 нм, 1 нм = 10 -9 м) и инфракрасную спектрометрию (от длин волн, при которых свет становится невидимым для глаз человека ~ 780 нм до области, где излучение уже обладает свойствами высокочастотных радиоволн ~ 0.5 мм). Классические фотометрия и спектрофотометрия все еще находят широкое применение (микропроцессорное управление, позволяющее полностью автоматизировать процесс измерения). Инфракрасная спектрометрия особенно полезна для идентификации и установления структуры органических соединений. КР-спетрометрия.

Атомная спектрометрия . В последние 20-30 лет выросла роль атомно-абсорбционной и атомно-эмиссионной спектрометрии. Методы требуют более сложной и дорогой аппаратуры, но позволяют выполнять массовые анализы и определять большинство химических элементов в матрицах самого разнообразного состава с крайне низкими пределами обнаружения (при абсолютном содержании ~ 10 -14 г). Эти инструментальные методы анализа становятся обычными (рутинными) даже в небольших лабораториях контроля окружающей среды, особенно при контроле загрязнения атмосферы и природных вод, когда простейшая предварительная пробоподготовка или концентрирование (экстракция, упаривание проб воды или улавливание атмосферных загрязнений на фильтре) способствуют повышению чувствительности определений.

Атомно-флуоресцентная спектрометрия также позволяет определять различные элементы, но на основе переизлучения световой энергии, поглощенной свободными атомами.

ЭПР-спектрометрия . Методом ЭПР исследуются молекулы, атомы и радикалы в газовой среде, растворах и различных типах матриц. ЭПР - один из наиболее чувствительных методов обнаружения и идентификации свободных радикалов, установления их электронной конфигурации и геометрии. Метод применяется для исследования комплексных соединений, в частности соединений переходных и редкоземельных металлов.

Спектроскопия ядерного магнитного резонанса - метод измерения относительной энергии и состояния ядерных спинов молекулы в магнитном поле. Метод пригоден для изучения атомов, обладающих ядерным спином, и может применяться для количественного и качественного анализа, особенно при анализе соединений с неизвестной структурой. Чаще всего используется применительно к ядрам 1 H, 19 F и 31 P.

Масс-спектрометрия . Этим методом анализируют вещество, преобразуя его в ионы и разделяя их затем в электрическом или магнитном поле.

Методы молекулярной спектрометрии (ИК-, УФ-, ЯМР-, ЭПР- и масс - спектрометрия) больше связаны с установлением структуры и исследованием механизма протекающих процессов, чем с простой идентификацией состава.

Хроматографические методы. По существу, хроматография является методом разделения смесей. После разделения смеси на компоненты осуществляется их идентификация и количественное определение. Для этого используются специальные устройства, называемые детектором и основанные на разных принципах измерения количества или концентрации вещества - от простейших термоэлементов или фотометров до масс-спектрометров высокого разрешения в комплексе с микропроцессором. Инструментальная хроматография является гибридным методом: хроматографическая колонка разделяет компоненты пробы на отдельные зоны, а детектор обычно измеряет концентрацию разделенных компонентов в фазе-носителе после их выхода из колонки.

Хроматографические методы, особенно газожидкостная и высокоэффективная жидкостная хроматография, часто оказываются незаменимыми при анализе сложных многокомпонентных смесей, а также для идентификации и количественного определения органических веществ со сходной структурой. Особенно быстро развиваются методы, сочетающие хроматографическое разделение смеси анализируемых веществ на компоненты и последующее их определение с помощью масс- или ИК-спектрометрии (хромато-масс- спектрометрия ГЖХ-МС, газожидкостная хроматография - фурье-спектроскопия в инфракрасной области ГЖХ-ИК-ФС)

Ядерно-физические методы занимают особое положение и применяются более ограниченно, так как требуют специально подготовленных лабораторий, соблюдения множества требований радиационной безопасности и пригодны лишь для определения радиоактивных изотопов химических элементов, обладающих специфическими ядерно-физическими характеристиками - явлением радиоактивного распада.

Ни один из перечисленных методов анализа не является универсальным с точки зрения пригодности для определения содержания всех интересующих компонентов и в любых объектах контроля.

При выборе конкретного метода анализа рассмотрению в первую очередь подлежат следующие вопросы:

    групповые характеристики и особенности физико-химических свойств загрязнителя, подлежащего контролю;

    Химический состав и физические свойства контролируемых объектов;

    Возможный диапазон изменения концентраций определяемого вещества в объектах контроля;

    Метрологические характеристики метода: чувствительность (предел обнаружения), точность и правильность (селективность, воспроизводимость результатов определений, отсутствие помех определению со стороны сопутствующих компонентов т.п.);

    Требования, предъявляемые к способу подготовки пробы вещества перед измерением;

    Время, затрачиваемое на единичное измерение;

    Общая продолжительность анализа с учетом пробоподготовки, измерения и выдачи результатов;

    Возможность автоматизации процесса пробоподготовки, измерения и выдачи результатов анализа.

Последние четыре пункта особенно важны при выборе метода, пригодного для выполнения массовых анализов.

В последние годы все более широкое применение получают инструментальные метода анализа, обладающие многими достоинствами: быстротой, высокой чувствительностью, возможностью одновременного определения нескольких компонентов, сочетания нескольких методов, автоматизации и использования компьютеров для обработки результатов анализа. Как правило, в инструментальных методах анализа применяются сенсоры (датчики), и, прежде всего, химические сенсоры, которые дают информацию о составе среды, в которой они находятся. Сенсоры связаны с системой накопления и автоматической обработки информации.

Условно инструментальные методы анализа можно разделить на три группы: спектральные и оптические, электрохимические и хроматографические методы анализа.

Спектральные и оптические методы анализа основаны на взаимодействии определяемого вещества и электромагнитного излучения (ЭМИ). Методы классифицируются по нескольким признакам – принадлежности ЭМИ к определенной части спектра (УФ – спектроскопия, фотоэлектроколориметрия, ИК – спектроскопия), уровню взаимодействия веществ, с ЭМИ (атом, молекула, ядро атома), физическим явлением (эмиссия, абсорбция и т.д.). Классификация спектральных и оптических методов по основным признакам приведена в табл. 12.

Атомно-эмиссионная спектроскопия – группа методов анализа, основанных на измерении длины волны и интенсивности светового потока, излучаемого возбужденными атомами в газообразном состоянии.

Таблица 12.

Классификация спектральных и оптических методов

Физическое явление Уровень взаимодействия
Атом Молекула
Спектральные методы
Поглощение света (адсорбция) Атомно-адсорбционная спектроскопия (ААС) Молекулярно-адсорбционная спектроскопия (МАС): фотоэлектроколориметрия, спектрофотометрия
Излучение света (эмиссия) Атомно-эмиссионная спектроскопия (АЭС): фотометрия пламени Молекулярно-эмиссионная спектроскопия (МЭС): люминесцентный анализ
Вторичная эмиссия Атомно-флуорисцентная спектроскопия (АФС) Молекулярно- флуорисцентная спектроскопия (МФС)
Рассеивание света - Спектроскопия рассеяния: нефелометрия, турбидеметрия
Оптические методы
Преломление света - Рефрактометрия
Вращение плоскополяризованного света - Поляриметрия

При эмиссионном анализе определяемое вещество, находящееся в газовой фазе, подвергают возбуждению, сообщая системе энергию в виде ЭМИ. Энергия, необходимая для перехода атома из нормального в возбужденное состояние, называется энергией возбуждения (потенциалом возбуждения ) . В возбужденном состоянии атом находится 10 -9 – 10 -8 с, затем, возвращаясь на более низкий энергетический уровень, испускает квант света в строго определенной частоты и длины волны.

Фотометрия пламени – метод анализа, основанный на фотометрировании излучения возбужденных в пламени атомов. Вследствие высокой температуры в пламени возбуждаются спектры элементов, имеющие низкую энергию возбуждения, - щелочные и щелочноземельные металлы.

Качественный анализ проводят по окраске перлов пламени и характерным спектральным линиям элементов. Летучие соединения металлов окрашивают пламя горелки в тот или иной цвет. Поэтому, если внести изучаемое вещество на платиновой или нихромовой проволоке в бесцветное пламя горелки, то происходит окрашивание пламени в присутствии веществ тех или иных элементов, например, в цвета: ярко-желтый (натрий), фиолетовый (калий), кирпично-красный (кальций), карминово-красный (стронций), желто-зеленый (медь или бор), бледно-голубой (свинец или мышьяк).

Количественный анализ основан на эмпирической зависимости интенсивности спектральной линии определяемого элемента от его концентрации в пробе с использованием градуировочного графика.

Фотоэлектроколориметрия основана на поглощении света определяемым веществом в видимой области спектра (400 – 760 нм); это разновидность молекулярно-адсорбционной спектроскопии. В ходе анализа поток света, походя через светопоглощающий раствор, частично рассеивается, преломляется, но большая часть поглощается, и поэтому на выходе интенсивность потока света меньше, чем на входе. Этот метод применяют для качественного и количественного анализа истинных растворов.

Турбидиметрический метод основан на поглощении и рассеивании монохроматического света взвешенными частицами анализируемого вещества. Метод применяется для анализа суспензий, эмульсий, при определении в растворах, природных и технологических водах веществ (хлориды, сульфаты, фосфаты), способных образовывать труднорастворимые соединения.

К оптическим методам анализа относятся рефрактометрия и поляриметрия.

Рефрактометрический метод основан на преломлении света при прохождении луча через границу раздела прозрачных однородных сред. При падении луча света на границу раздела двух сред происходит частичное отражение от поверхности раздела и частичное распространение света в другой среде. Метод используют для идентификации и частоты веществ, количественного анализа.

Поляриметрия – оптический неспектральный метод анализа, основанный на вращении плоскополяризованного монохроматического луча света оптически активными веществами. Метод предназначен для качественного и количественного анализа только оптически активных веществ (сахарозы, глюкозы и др.), способных вращать плоскость поляризации света.

Электрохимические методы анализа основаны на измерении потенциалов, силы тока и других характеристик при взаимодействии анализируемого вещества с электрическим током. Эти методы делятся на три группы: методы, основанные на электродных реакциях, протекающих в отсутствии тока (потенциометрия ); методы, основанные на электродных реакциях, протекающих под действием тока (вольтамперометрия, кулонометрия, электрогравиметрия ); методы, основанные на измерениях без протекания электродной реакции (кондуктометрия – низкочастотное титрование и осциллометрия – высокочастотное титрование).

По приемам применения электрохимические методы классифицируются на прямые , основанные на непосредственной зависимости аналитического сигнала от концентрации вещества, и косвенные (установление точки эквивалентности при титровании).

Для регистрации аналитического сигнала необходимы два электрода – индикаторный и электрод сравнения. Электрод, потенциал которого зависит от активности определяемого ионов, называется индикаторным . Он должен быстро и обратимо реагировать на изменение концентрации определяемых ионов в растворе. Электрод, потенциал которого не зависит от активности определяемых ионов и остается постоянным, называется электродом сравнения . Например, при определении рН растворов в качестве индикаторного электрода используют стеклянный электрод, а электрода сравнения – хлорсеребряный (см. тему 9).

Потенциометрический метод основан на измерении электродвижущих сил обратимых гальванических элементов и применяется для определения концентрации (активности) ионов в растворе. При расчетах используют уравнение Нернста.

Вольтамперометрия – группа методов, основанных на процессах электрохимического окисления или восстановления определяемого вещества, протекающих на микроэлектроде и обусловливающих возникновение диффузного тока. Методы основаны на изучении вольтамперных кривых (вольтамперограмм), отражающих зависимость силы тока от приложенного напряжения. Вольтамперограммы позволяют одновременно получить информацию о качественном и количественном составе анализируемого раствора, а также о характере электродного процесса.

В методах вольтамперометрии применяют двух- и трехэлектродные ячейки. Индикаторные электроды – рабочие поляризуемые электроды, на которых протекают процессы электроокисления или электровосстановления вещества; электроды сравнения – электроды второго рода (насыщенные хлорсеребряный или каломельный).

Если в качестве рабочего поляризуемого электрода применяют ртутный капающий с постоянно обновляющейся поверхностью, а электродом сравнения служит слой ртути на дне ячейки, то метод называется полярографией .

В современной вольтамперометрии применяют любые индикаторные электроды (вращающиеся или стационарный платиновый или графитовый, стационарный ртутный), кроме капающего ртутного электрода.

Кондуктометрический метод основан на измеренииэлектрической проводимости растворов в зависимости от концентрации присутствующих заряженных частиц. Объекты анализа – растворы электролитов. Электрическая проводимость разбавленных растворов пропорциональна концентрации электролитов. Поэтому, определив электрическую проводимость и сравнив полученное значение со значением на калибровочном графике, можно найти концентрацию электролита в растворе. Методом кондуктометрии, например, определяют общее содержание примесей в воде высокой чистоты.

Хроматогафические методы разделения, идентификации и количественного определения основаны на различных скоростях движения отдельных компонентов в потоке подвижной фазы вдоль слоя неподвижной фазы, причем анализируемые вещества находятся в обеих фазах. Эффективность разделения достигается за счет многократно повторяющихся циклов сорбция – десорбция. При этом компоненты по-разному распределяются между подвижной и неподвижной фазами в соответствии с их свойствами, в результате происходит разделение. Условно хроматографические методы можно разделить на газовую хроматографию, ионообменную и бумажную.

Газовая хроматография – метод разделения летучих термостабильных соединений, основанный на распределении веществ между фазами, одна из которых – газ, другая – твердый сорбент или вязкая жидкость. Разделение компонентов смеси происходит из-за различной адсорбционной способности или растворимости анализируемых веществ при движении их газообразной смеси в колонке с потоком подвижной фазы вдоль неподвижной фазы.

Объекты анализа в газовой хроматографии – газы, жидкости и твердые вещества с молекулярной массой менее 400 и температурой кипения менее 300 0 С. При хроматографическом разделении анализируемые соединения не должны подвергаться деструкции.

Ионообменная хроматография – метод разделения и анализа веществ, основанный на эквивалентном обмене ионов анализируемой смеси и ионообменника (ионита). Происходит обмен ионами между фазами гетерогенной системы. Неподвижной фазой являются иониты; подвижной, как правило, вода, так как обладает хорошими растворяющими и ионизирующими свойствами. Соотношение концентраций обменивающихся ионов в растворе и фазе сорбентов (ионита) определяется ионообменным равновесием.

Хроматография на бумаге относится к плоскостной хроматографии, она основана на распределении анализируемых веществ между двумя несмешивающимися жидкостями. В распределительной хроматографии разделение веществ происходит вследствие различия коэффициентов распределения компонентов между двумя несмешивающимися жидкостями. Вещество присутствует в обеих фазах в виде раствора. Неподвижная фаза удерживается в порах хроматографической бумаги, не взаимодействуя с ней, бумага выполняет функцию носителя неподвижной фазы.

Таким образом, использование законов электрохимии, сорбции, эмиссии, поглощения или отражения излучения и взаимодействия частиц с магнитными полями, позволило создать большое число инструментальных методов анализа, характеризуемых высокой чувствительностью, быстротой и надежностью определения, возможностью анализа многокомпонентных систем.

Вопросы для самоподготовки:

1. Что такое химическая идентификация вещества?

2. Какие виды анализа вам известны?

3. Что такое чистота веществ?

4. Как проводят идентификацию катионов неорганических веществ?

5. Как проводят идентификацию анионов неорганических веществ?

6. Как классифицируются методы количественного анализа?

7. Каковы основы гравиметрического метода анализа?

8. Какова характеристика титриметрических методов анализа?

9. Какова характеристика химических методов анализа?

10. Как классифицируют инструментальные методы анализа?

11. Каковы основы электрохимических методов анализа?

12. Каковы основы хроматографических методов анализа?

13. Каковы основы оптических методов анализа?

Литература:

1. Ахметов Н.С. Общая и неорганическая химия. М.:Высшая шк. – 2003, 743 с.

2. Ахметов Н.С. Лабораторные и семинарские занятия по общей и неорганической химии. М.: Высшая шк. – 2003, 367 с.

3. Васильев В.П. Аналитическая химия. - М.: Высш. шк. – 1989, Ч. 1, 320 с, Ч. 2., 326 с.

4. Коровин Н.В. Общая химия. - М.: Высш. шк. – 1990, 560 с.

5. Глинка Н.Л. Общая химия. – М.: Высш. шк. – 1983, 650 с.

6. Глинка Н.Л. Сборник задач и упражнений по общей химии. – М.: Высш. шк. – 1983, 230 с.

7. Общая химия. Биофизичекая химия. Химия биогенных элементов./ Под ред Ю.А. Ершова - М.: Высш. шк. – 2002, 560 с.

8. Фролов В.В. Химия. – М.: Высш. шк. – 1986, 450 с.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Воронеж 2011
Лекция № 1 (2ч) Введение Вопросы: 1. Предмет химии. Значение химии в изучении природы и развитии техники. 2. Осно

Основные количественные законы химии
К основным количественным законам химии относятся:закон постоянства состава, закон кратных отношений и закон эквивалентов. Эти законы были открыты в конце XIII – начале XIX веков, и

Современная модель строения атома
В основе современной теории строения атома лежат работы Дж. Томсона (который в 1897 г. открыл электрон, а в 1904 г. предложил модель строения атома, согласно которой атом – это заряженная сфера с в

Орбитальное квантовое число 0 1 2 3 4
Каждому значению l соответствует орбиталь особой формы, например s-орбиталь имеет сферическую форму, р-орбиталь – гантель. В одной и той же оболочке энергия подуровней возрастает в ряду E

Строение многоэлектронных атомов
Подобно любой системе, атомы стремятся к минимуму энергии. Это достигается при определенном состоянии электронов, т.e. при определенном распределении электронов по орбиталям. Запись

Периодические свойства элементов
Так как электронное строение элементов изменяется периодически, то, соответственно, периодически изменяются и свойства элементов, определяемые их электронным строением, такие как энергия ионизации,

Периодическая система элементов Д.И.Менделеева
В 1869 г. Д. И. Менделеев сообщил об открытии периодического закона, современная формулировка которого следующая: свойство элементов, а также формы и свойства их соединений

Общая характеристика химической связи
Учение о строении вещества объясняет причины многообразия структуры веществ в различных агрегатных состояниях. Современные физические и физико-химические методы позволяют экспериментально определят

Типы химической связи
К основным типам химической связи относят ковалентную (полярную и неполярную), ионную и металлическую связи. Ковалентной связью называют химическую связь, образованную

Типы межмолекулярных взаимодействий
Связи, при образовании которых перестройка электронных оболочек не происходит, называются взаимодействием между молекулами. К основным видам взаимодействия молекул следует о

Пространственная структура молекул
Пространственная структура молекул зависит от пространственной направленности перекрывания электронных облаков числом атомов в молекуле и числом электронных пар связей за счет непод

Общая характеристика агрегатного состояния вещества
Почти все известные вещества в зависимости от условий находятся в газообразном, жидком, твердом или плазменном состоянии. Это и называется агрегатным состоянием вещества. Аг

Газообразное состояние вещества. Законы идеальных газов. Реальные газы
Газы распространены в природе и находят широкое применение в технике. Их используют в качестве топлива, теплоносителей, сырья для химической промышленности, рабочего тела для выполнения механическо

Характеристика жидкого состояния вещества
Жидкости по своим свойствам занимают промежуточное положение между газообразными и твердыми телами. Вблизи точки кипения они проявляют сходство с газами: текучи, не имеют определенной формы, аморфн

Характеристики некоторых веществ
Вещество Вид кристалла Энергия кристаллической решетки, кДж/моль Темпер

Общие понятия термодинамики
Термодинамика – наука, изучающая превращения различных форм энергии друг в друга и устанавливающая законы этих превращений. Как самостоятельная дисциплин

Термохимия. Тепловые эффекты химических реакций
Любые химические процессы, а также ряд физических превращений веществ (испарение, конденсация, плавление, полиморфные превращения и др.) всегда сопровождаются изменением запаса внут

Закон Гесса и следствия из него
На основе многочисленных экспериментальных исследований русским академиком Г. И. Гессом был открыт основной закон термохимии (1840 г.) – закон постоянства сумм теплот реа

Принцип работы тепловой машины. КПД системы
Тепловой машинойназывается такое устройство, которое преобразует теплоту в работу. Первая тепловая машина была изобретена в конце XVIII века (паровая). Сейчас существуют дви

Свободная и связанная энергии. Энтропия системы
Известно, что любая форма энергии может полностью преобразовываться в теплоту, но теплота преобразуется в другие виды энергии лишь частично, условно запас внутренней энергии системы

Влияние температуры на направление химических реакций
DH DS DG Направление реакции DH < 0 DS > 0 DG < 0

Понятие о химической кинетике
Химической кинетикой называется учение о скорости химических реакций и ее зависимости от различных факторов – природы и концентрации реагирующих веществ, давления,

Факторы, влияющие на скорость химических реакций. Закон действующих масс
На скорость химических реакций оказывают влияние следующие факторы: природа и концентрации реагирующих веществ; температура, природа растворителя, присутствие катализатора и т.д.

Теория активизации молекул. Уравнение Аррениуса
Скорость любой химической реакции зависит от числа столкновений реагирующих молекул, так как число столкновения пропорционально концентрациям реагирующих веществ. Однако не все стол

Особенности каталитических реакций. Теории катализа
Скорость химической реакции можно регулировать с помощью катализатора. Вещества, которые участвуют в реакциях и изменяют (чаще всего увеличивают) ее скорость, оставаясь к концу реак

Обратимые и не обратимые реакции. Признаки химического равновесия
Все реакции можно поделить на две группы: обратимые и необратимые. Необратимые реакции сопровождаются выпадением осадка, образованием малодиссоциирующего вещества или выделением газа. Обратимые реа

Константа химического равновесия
Рассмотрим обратимую химическую реакцию общего вида, в которой все вещества находятся в одном агрегатном состоянии, например, жидком: аA + вB D сC + dD, где

Правило фаз Гиббса. Диаграмма состояния воды
Качественная характеристика гетерогенных равновесных систем, в которых не происходит химического взаимодействия, а наблюдается лишь переход составных частей системы из одного агрегатного состояния

Правило фаз для воды имеет вид
С = 1+ 2 – Ф = 3 – Ф если Ф = 1, то С = 2 (система бивариантна) Ф = 2, то С = 1 (система одновариантна) Ф = 3, то С = 0 (система безвариантна) Ф = 4, то С = -1 (

Понятие о химическом сродстве веществ. Уравнения изотермы, изобары и изохоры химических реакций
Под термином «химическое сродство» понимают способность веществ вступать в химическое взаимодействие друг с другом. У различных веществ оно зависит от природы реагирующих ве

Сольватная (гидратная) теория растворения
Растворами называются гомогенные системы, состоящие из двух или более веществ, состав которых может меняться в довольно широких пределах, допустимых раст

Общие свойства растворов
В конце XIX века Рауль, Вант-Гофф, Аррениус установили весьма важные закономерности, связывающие концентрацию раствора с давлением насыщенного пара растворителя над раствором, темпе

Типы жидких растворов. Растворимость
Способность к образованию жидких растворов выражена в различной степени у различных индивидуальных веществ. Одни вещества способны растворяться неограниченно (вода и спирт), другие – лишь в огранич

Свойства слабых электролитов
При растворении в воде или других растворителях, состоящих из полярных молекул, электролиты подвергаются диссоциации, т.е. в большей или меньшей степени распадаются на положительно и отрицательно з

Свойства сильных электролитов
Электролиты, практически полностью диссоциирующие в водных растворах, называются сильными электролитами. К сильным электролитам относятся большинство солей, которые уже в кр

При соблюдении этих условий коллоидные частицы приобретают электрический заряд и гидратную оболочку, что препятствует выпадению их в осадок
К дисперсионным методам получения коллоидных систем относятся: механические – дробление, растирание, размол и т. д.; электрический – получение золей металлов под действ

Устойчивость коллоидных растворов. Коагуляция. Пептизация
Под устойчивостью коллоидного раствора понимают постоянство основных свойств этого раствора: сохранение размеров частиц (агрегативная устойчивость

Свойства коллоидно-дисперсных систем
Все свойства коллоидно-дисперсных систем можно разделить на три основные группы: молекулярно-кинетические, оптические и электрокинетические. Рассмотрим молекулярно-кинетические

Особенности обменных процессов
Химические реакции разделяются на обменные и окислительно-восстановительные (Ox-Red). Если в реакции не происходит изменение степени окисления, то такие реакции называются обменными. Они возможны п

Особенности окислительно-восстановительных процессов
При окислительно-восстановительных реакциях происходит изменение степени окисления вещества. Реакции можно разделить на те, которые проходят в одном реакционном объеме (например, в

Общие понятия электрохимии. Проводники первого и второго рода
Электрохимия – это раздел химии, занимающийся изучением закономерностей взаимных превращений электрической и химической энергии. Электрохимические процессы можно разде

Понятие об электродном потенциале
Рассмотрим процессы, протекающие в гальванических элементов, т. е. процессы превращения химической энергии в электрическую. Гальваническим элементомназывают электрохим

Гальванический элемент Даниэля-Якоби
Рассмотрим систему, в которой два электрода находятся в растворах собственных ионов, например, гальванический элемент Даниэля-Якоби. Он состоит из двух полуэлементов: из цинковой пластины, погружен

Электродвижущая сила гальванического элемента
Максимальная разность потенциалов электродов, которая может быть получена при работе гальванического элемента, называется электродвижущей силой (ЭДС) элемента.

Поляризация и перенапряжение
При самопроизвольных процессах устанавливается равновесный потенциал электродов. При прохождении электрического тока потенциал электродов изменяется. Изменение потенциала электрода

Электролиз. Законы Фарадея
Электролизом называют процессы, протекающие на электродах под действием электрического тока, подаваемого от внешнего источника тока через электролиты. При элект

Коррозия металлов
Коррозия – это разрушение металла в результате его физико-химического взаимодействия с окружающей средой. Это процесс самопроизвольный, идущий с уменьшением энергии Гиббса сист

Методы получения полимеров
Полимеры – высокомолекулярные соединения, которые характеризуются молекулярной массой от нескольких тысяч до многих миллионов. Молекулы полимеров, называ

Строение полимеров
Макромолекулы полимеров могут быть линейными, разветвленными и сетчатыми. Линейные полимеры – это полимеры, которые построены из длинных цепей одномерных элементов, т.

Свойства полимеров
Свойства полимеров условно можно разделить на химические и физические. И те, и другие свойства связаны с особенностями строения полимеров, способом их получения, природой вводимых в

Применение полимеров
На основе полимеров получают волокна, пленки, резины, лаки, клеи, пластмассы и композиционные материалы (композиты). Волокна получают путем продавливания растворов или

Некоторые реагенты для идентификации катионов
Реагент Формула Катион Продукт реакции Ализарин C14H6O

1. Классификация инструментальных методов анализа по измерительному параметру и способу измерения. Примеры инструментальных методов анализа для качественного анализа веществ

В одном из способов классификации инструментальных (физико-химических) методов в основу анализа положена природа измеряемого физического параметра анализируемой системы и способа его измерения; величина этого параметра является функцией количества вещества. В соответствии с этим все инструментальные методы делятся на пять больших групп:

Электрохимические;

Оптические;

Хроматографические;

Радиометрические;

Масс-спектрометрические.

Электрохимические методы анализа основаны на использовании электрохимических свойств анализируемых веществ. К ним относятся следующие методы.

Электрогравиметрический метод - основан на точном измерении массы определяемого вещества или его составных частей, которые выделяются на электродах при прохождении постоянного электрического тока через анализируемый раствор.

Кондуктометрический метод - основан на измерении электрической проводимости растворов, которая изменяется в результате протекающих химических реакций и зависит от свойств электролита, его температуры и концентрации растворенного вещества.

Потенциометрический метод - основан на измерении потенциала электрода, погруженного в раствор исследуемого вещества. Потенциал электрода зависит от концентрации соответствующих ионов в растворе при постоянных условиях измерений, которые проводят с помощью приборов потенциометров.

Полярографический метод - основан на использовании явления концентрационной поляризации, возникающей на электроде с малой поверхностью при пропускании электрического тока через анализируемый раствор электролита.

Кулонометрический метод - основан на измерении количества электричества, израсходованного на электролиз определенного количества вещества. В основе метода лежит закон Фарадея.

Оптические методы анализа основаны на использовании оптических свойств исследуемых соединений. К ним относятся следующие методы.

Эмиссионный спектральный анализ - основан на наблюдении линейчатых спектров, излучаемых парами веществ при их нагревании в пламени газовой горелки, искры или электрической дуге. Метод дает возможность определять элементный состав веществ.

Абсорбционный спектральный анализ в ультрафиолетовой, видимой и инфракрасной областях спектра. Различают спектрофотометрический и фотоколориметрический методы. Спектрофотометрический метод анализа основан на измерении поглощения света (монохроматического излучения) определенной длины волны, которая соответствует максимуму кривой поглощения вещества. Фотоколориметрический метод анализа основан на измерении светопоглощения или определения спектра поглощения в приборах - фотоколориметрах в видимом участке спектра.

Рефрактометрия - основана на измерении коэффициента преломления.

Поляриметрия - основана на измерении вращения плоскости поляризации.

Нефелометрия - основана на использовании явлений отражения или рассеивания света неокрашенными частицами, взвешенными в растворе. Метод дает возможность определять очень малые количества вещества, находящиеся в растворе в виде взвеси.

Турбидиметрия - основанная на использовании явлений отражения или рассеивания света окрашенными частицами, которые находятся во взвешенном состоянии в растворе. Свет, поглощенный раствором или прошедший через него, измеряют так же, как и при фотоколориметрии окрашенных растворов.

Люминесцентный или флуоресцентный анализ - основан на флуоресценции веществ, которые подвергаются облучению ультрафиолетовым светом. При этом измеряется интенсивность излучаемого или видимого света.

Пламенная фотометрия (фотометрия пламени) - основана на распылении раствора исследуемых веществ в пламени, выделении характерного для анализируемого элемента излучения и измерении его интенсивности. Метод используют для анализа щелочных, щелочноземельных и некоторых других элементов.

Хроматографические методы анализа основаны на использовании явлений избирательной адсорбции. Метод применяют в анализе неорганических и органических веществ для разделения, концентрирования, выделения отдельных компонентов из смеси, очистки от примесей.

Радиометрические методы анализа основаны на измерении радиоактивного излучения данного элемента.

Масс-спектрометрические методы анализа основаны на определении масс отдельных ионизированных атомов, молекул и радикалов, в результате комбинированного действия электрического и магнитного полей. Регистрацию разделенных частиц проводят электрическим (масс-спектрометрия) или фотографическим (масс-спектрография) способами. Определение проводят на приборах - масс-спектрометрах или масс-спектрографах.

Примеры инструментальных методов анализа для качественного анализа веществ: рентгено-флуоресцентный, хроматография, кулонометрия, эмиссионный, пламенная фотометрия и т.д.

2.

2. 1 Сущность потенциометрического титрования. Требования к реакциям. Примеры реакций окисления-восстановления, осаждения, комплексообразования и соответствующие им электродные системы. Графические способы опреде ления конечной точки титрования

Потенциометрическое титрование основано на определении эквивалентной точки по изменению потенциала на электродах, опущенных в титруемый раствор. При потенциометрическом титровании используют электроды как неполяризующиеся (без протекания через них тока), так и поляризующиеся (с протеканием через них тока).

В первом случае в процессе титрования определяется концентрация в растворе одного из ионов, для регистрации которого имеется подходящий электрод.

Потенциал Ех на этом индикаторном электроде устанавливается согласно уравнению Нернста. Например, для реакций окисления - восстановления уравнение Нернста выглядит следующим образом:

где Ех - потенциал электрода в данных конкретных условиях; Aок- концентрация окисленной формы металла; Aвосст - концентрация восстановленной формы металла; Е0 - нормальный потенциал; R - универсальная газовая постоянная (8,314 дж/(град*моль)); Т - абсолютная температура; n - разность валентностей окисленной и восстановленной форм ионов металла.

Для образования электрической цепи в титруемый раствор помещают второй так называемый электрод сравнения, например каломельный, потенциал которого в процессе реакции остается постоянным. Потенциометрическое титрование на неполяризующихся электродах помимо упомянутых реакций окисления - восстановления используется также при реакциях нейтрализации. В качестве индикаторных электродов при реакциях окисления-восстановления применяют металлы (Pt, Wo, Mo). При реакциях нейтрализации применяют чаще всего стеклянный электрод, имеющий в широкой области характеристику, аналогичную водородному электроду. Для водородного электрода зависимость потенциала от концентрации ионов водорода выражается следующей зависимостью:

Или при 25°С:

При потенциометрическом титровании часто используют титрование не до определенного потенциала, а до определенной величины рН, например, до нейтральной среды рН=7. Несколько в стороне от общепринятых методов потенциометрического титрования (без протекания тока через электроды), рас смотренных выше, стоят методы потенциометрического титрования при постоянном токе с поляризующимися электродами. Чаще применяют два поляризующихся электрода, но иногда пользуются и одним поляризующимся электродом.

В отличие от потенциометрического титрования с неполяризующимися электродами, при котором ток через электроды практически не протекает, в данном случае через электроды (обычно платиновые) пропускается небольшой (около нескольких микроампер) постоянный ток, получаемый от источника стабилизированного тока. В качестве источника тока может служить высоковольтный источник питания (около 45 В) с последовательно включенным относительно большим сопротивлением. Измеряемая на электродах разность потенциалов резко возрастает при приближении реакции к эквивалентной точке вследствие поляризации электродов. Величина скачка потенциала может быть гораздо больше, чем при титровании при нулевом токе с неполяризующимися электродами.

Требования к реакциям при потенциометрическом титровании - это полнота прохождения реакции; достаточно большая скорость реакции (чтобы результаты не приходилось ждать, и была возможность автоматизации); получение в реакции одного четкого продукта, а не смеси продуктов, которые при различных концентрациях могут получаться.

Примеры реакций и соответствующие им электродные системы:

Окисление -восстановлени е :

Система электродов:

В обоих случаях используется система, которая состоит из платинового электрода и хлорсеребряного.

О саждени е :

Ag+ + Cl- =AgClv.

Система электродов:

К омплексообразовани е :

Система электродов:

Графические способы определения конечной точки титрования. Принцип заключается в визуальном изучении полной кривой титрования. Если начертить зависимость потенциала индикаторного электрода от объема титранта, то на полученной кривой имеется максимальный наклон - т.е. максимальное значение ДE/ДV - который можно принять за точку эквивалентности. Рис. 2.1, показывающий именно такую зависимость, построен по данным табл. 2.1.

Таблица 2.1 Результаты потенциометрического титрования 3,737 ммоль хлорида 0,2314 F раствором нитрата серебра

Рис. 2.1 Кривые титрования 3,737 ммоль хлорида 0,2314 F раствором нитрата серебра: а - обычная кривая титрования, показывающая область вблизи точки эквивалентности; б - дифференциальная кривая титрования (все данные из табл. 2.1)

Метод Грана. Можно построить график ДE/ДV - изменение потенциала на объем порции титранта как функцию объема титранта. Такой график, полученный из результатов титрования, приведенных в табл. 2.1, показан на рис. 2.2.

Рис. 2.2 Кривая Грана, построенная по данным потенциометрического титрования, представленным в табл. 2.1

2.2 Задача : в ычислить потенциал платинового электрода в растворе сульфата железа (II), оттитрованного раствором перманганата калия на 50% и 100,1%; если концентрация ионов FeІ ? , H ? и MnO ?? равны 1 моль/дмі

Потенциал платинового электрода - электрода третьего рода - определяется природой сопряженной окислительно-восстановительной пары и концентрацией ее окисленной и восстановленной форм. В данном растворе имеется пара:

для которой:

Поскольку исходный раствор оттитрован на 50%, то /=50/50 и 1.

Следовательно, E = 0,77 + 0,058 lg1 = 0,77 В.

3. Амперометрическое титрование

3.1 Амперометрическое титрование, его сущность, условия. Типы кривых титрования в зависимости от природы титруемого вещества и титранта на примерах конкретных реакци й

Амперометрическое титрование. Для амперометрической индикации в титровании можно использовать ячейку такого же принципиального устройства, что и для прямой амперометрии. В этом случае метод называется амперометрическим титрованием с одним поляризованным электродом. В ходе титрования контролируют ток, обусловленный определяемым веществом, титрантом или продуктом реакции, при постоянном значении потенциала рабочего электрода, находящимся в области потенциалов предельного диффузионного тока.

В качестве примера рассмотрим осадительное титрование ионов Рb2+ раствором хромата калия при различных потенциалах рабочего электрода.

Области предельных диффузионных токов окислительно-восстановительных пар Pb2+/Pb и СrО42-/Сr(ОН)3 расположены таким образом, что при потенциале 0 В хромат-ион уже восстанавливается, а ион Рb2+ еще нет (этот процесс происходит лишь при более отрицательных потенциалах).

В зависимости от потенциала рабочего электрода можно получить кривые титрования различной формы.

а) Потенциал равен - 1В (рис. 3.1):

До точки эквивалентности протекающий через ячейку ток является катодным током восстановления ионов Рb2+. При добавлении титранта их концентрация уменьшается, и ток падает. После точки эквивалентности ток обусловлен восстановлением Cr(VI) до Сr(III), вследствие чего по мере добавления титранта катодный ток начинает возрастать. В точке эквивалентности (ф=1) на кривой титрования наблюдается резкий излом (на практике он бывает выражен слабее, чем на рис. 3.1).

б) Потенциал равен 0 В:

При этом потенциале ионы Рb2+ не восстанавливаются. Поэтому до точки эквивалентности наблюдается лишь небольшой постоянный остаточный ток. После точки эквивалентности в системе появляются свободные хромат-ионы, способные к восстановлению. При этом по мере добавления титранта катодный ток возрастает, как и в ходе титрования при - 1В (рис. 3.1).

Рис. 3.1 Кривые амперометрического титрования Рb2+ хромат-ионами при потенциалах рабочего электрода - 1В и 0 В

По сравнению с прямой амперометрией амперометрическое титрование, как и любой титриметрическии метод, характеризуется более высокой точностью. Однако метод амперометрического титрования более трудоемок. Наиболее широко применяются на практике методики амперометрического титрования с двумя поляризованными электродами.

Биамперометрическое титрование . Этот вид амперометрического титрования основан на использовании двух поляризуемых электродов - обычно платиновых, на которые подается небольшая разность потенциалов - 10-500 мВ. В этом случае прохождение тока возможно лишь при протекании обратимых электрохимических реакций на обоих электродах. Если хоть одна из реакций кинетически затруднена, происходит поляризация электрода, и ток становится незначительным.

Вольтамперные зависимости для ячейки с двумя поляризуемыми электродами приведены на рис. 3.2. В этом случае играет роль лишь разность потенциалов между двумя электродами. Значение потенциала каждого из электродов в отдельности остается неопределенным ввиду отсутствия электрода сравнения.

Рис 3.2 Вольтамперные зависимости для ячейки с двумя одинаковыми поляризуемыми электродами в случае обратимой реакции без перенапряжения (а ) и необратимой реакции с перенапряжением (б ).

В зависимости от степени обратимости электродных реакций можно получить кривые титрования различной формы.

а) Титрование компонента обратимой окислительно-восстановительной пары компонентом необратимой пары, например, иода тиосульфатом (рис. 3.3, а ):

I2 + 2S2O32- 2I- + S4O62-.

До точки эквивалентности через ячейку протекает ток, обусловленный процессом:

Ток возрастает вплоть до величины степени оттитрованности, равной 0,5, при которой оба компонента пары І2/І- находятся в одинаковых концентрациях. Затем ток начинает убывать вплоть до точки эквивалентности. После точки эквивалентности вследствие того, что пара S4O62-/S2O32- является необратимой, наступает поляризация электродов, и ток прекращается.

б) Титрование компонента необратимой пары компонентом обратимой пары, например, ионов As(III) бромом (рис. 3.3, б ):

До точки эквивалентности электроды поляризованы, поскольку окислительно-восстановительная система As(V)/As(III) необратима. Через ячейку не протекает ток. После точки эквивалентности ток возрастает, поскольку в растворе появляется обратимая окислительно-восстановительная система Вr2/Вr-.

в) Определяемое вещество и титрант образуют обратимые окислительно-восстановительные пары: титрование ионов Fe(II) ионами Ce(IV) (рис. 3.3, в ):

Здесь поляризации электродов не наблюдается ни на каком этапе титрования. До точки эквивалентности ход кривой такой же, как на рис. 3.3, а , после точки эквивалентности - как на рис. 3.3, б .

Рис. 3.3 Кривые биамперометрического титрования иода тиосульфатом (a ), As(III) бромом (б ) и ионов Fe(II) ионами Ce(IV) (в )

3.2 Задача : в электрохимическую ячейку с платиновым микроэлектродом и электродом сравнения поместили 10,00 смі раствора NaCl и оттитровали 0,0500 моль/дмі раствором AgNO 3 объёмом 2,30 смі. Рассчитать содержание NaCl в растворе (%)

В растворе идет реакция:

Ag+ + Cl- =AgClv.

V(AgNO3) = 0,0023 (дм3);

n(AgNO3) = n(NaCl);

n(AgNO3)=c(AgNO3)*V(AgNO3)=0,0500*0,0023=0,000115,

или 1,15*104(моль).

n(NaCl) = 1,15*10-4 (моль);

m(NaCl) = M(NaCl)* n(NaCl) = 58,5*1,15*10-4 = 6,73*10-3 г.

Плотность р-ра NaCl примем за 1 г/см3, тогда масса р-ра будет 10 г, отсюда:

щ(NaCl) = 6,73*10-3/10*100 % = 0,0673 %.

Ответ: 0,0673 %.

4. Хроматографические методы анализа

4.1 Фазы в хроматографических методах анализа, их характеристика. Основы жидкостной хроматографии

Метод жидкостной распределительной хроматографии предложен Мартином и Синджем, которые показали, что высота, эквивалентная теоретической тарелке, соответствующим образом наполненной колонки может достигать 0,002 см. Таким образом, колонка длиной 10 см может содержать порядка 5000 тарелок; высокой эффективности разделения можно ожидать даже от сравнительно коротких колонок.

Стационарная фаза. Наиболее распространенным твердым носителем в распределительной хроматографии служит кремневая кислота или силикагель. Этот материал сильно поглощает воду; таким образом, стационарной фазой является вода. Для некоторых разделений полезно в пленку из воды включить какой-либо буфер или сильную кислоту (или основание). В качестве стационарной фазы на силикагеле нашли также применение полярные растворители, такие, как алифатические спирты, гликоли или нитрометан. К другим носителям относятся диатомиты, крахмал, целлюлоза и толченое стекло; для смачивания этих твердых носителей используют воду и разные органические жидкости.

Подвижная фаза. Подвижной фазой может служить чистый растворитель или смесь растворителей, которые в заметной степени не смешиваются со стационарной фазой. Повысить эффективность разделения иногда можно непрерывным изменением состава смешанного растворителя по мере продвижения элюента (градиентное элюирование). В некоторых случаях разделение улучшается, если элюирование проводят рядом разных растворителей. Подвижную фазу выбирают главным образом эмпирически.

Современные приборы часто снабжены насосом для ускорения потока жидкости через колонку.

Основными параметрами ЖХ, характеризующими поведение вещества в колонке, являются время удерживания компонента смеси и удерживаемый объем. Время от момента ввода анализируемой пробы до регистрации максимума пика называют временем удерживания (элюирования) t R . Время удерживания складывается из двух составляющих - времени пребывания вещества в подвижной t 0 и неподвижной t s фазах:

t R .= t 0 + t s . (4.1)

Значение t 0 фактически равно времени прохождения через колонку адсорбируемого компонента. Значение t R не зависит от количества пробы, но зависит от природы вещества и сорбента, а также упаковки сорбента и может меняться от колонки к колонке. Поэтому для характеристики истинной удерживающей способности следует ввести исправленное время удерживания t? R :

t? R = t R - t 0 . (4.2)

Для характеристики удерживания часто используют понятие удерживаемого объема V R - объем подвижной фазы, который нужно пропустить через колонку с определенной скоростью, чтобы элюировать вещество:

V R = t R F, (4.3)

где F - объемная скорость потока подвижной фазы, см3с-1.

Объем для вымывания несорбируемого компонента (мертвый объем) выражается через t 0 : V 0 = t 0 F , и включает в себя объем колонки, не занятый сорбентом, объем коммуникаций от устройства ввода пробы до колонки и от колонки до детектора.

Исправленный удерживаемый объем V? R соответственно равен:

V? R = V R - V 0 . . (4.4)

При постоянных условиях хроматографирования (скорость потока, давление, температура, состав фаз) значения t R и V R строго воспроизводимы и могут быть использованы для идентификации веществ.

Любой процесс распределения вещества между двумя фазами характеризуют коэффициентом распределения D . Величина D отношением c s /c 0 , где с т и с 0 - концентрации вещества в подвижной и неподвижной фазах соответственно. Коэффициент распределения связан с хроматографическими параметрами.

Характеристикой удерживания является также коэффициент емкости k" , определяемый как отношение массы вещества в неподвижной фазе к массе вещества в подвижной фазе: k" = m н /m п . Коэффициент емкости показывает, во сколько раз вещество дольше находится в неподвижной фазе, чем в подвижной. Величину k" вычисляют из экспериментальных данных по формуле:

Важнейшим параметром хроматографического разделения является эффективность хроматографической колонки, количественной мерой которой служат высота Н, эквивалентная теоретической тарелке, и число теоретических тарелок N.

Теоретическая тарелка - это гипотетическая зона, высота которой соответствует достижению равновесия между двумя фазами. Чем больше теоретических тарелок в колонке, т.е. чем большее число раз устанавливается равновесие, тем эффективнее колонка. Число теоретических тарелок легко рассчитать непосредственно из хроматограммы, сравнивая ширину пика w и время пребывания t R компонента в колонке :

Определив N и зная длину колонки L , легко вычислить Н :

Эффективность хроматографической колонки также характеризует симметричность соответствующего пика: чем более симметричен пик, тем более эффективной является колонка. Численно симметричность выражают через коэффициент симметрии K S , который может быть определен по формуле:

где b 0.05 - ширина пика на одной двадцатой высоты пика; А - расстояние между перпендикуляром, опущенным из максимума пика, и передней границей пика на одной двадцатой высоты пика.

Для оценки воспроизводимости хроматографического анализа используют относительное стандартное отклонение (RSD), характеризующее рассеяние результатов в выборочной совокупности:

где n - количество параллельных хроматограмм; х - содержание компонента в пробе, определенное путем расчета площади или высоты соответствующего пика на хроматограмме; - среднее значение содержания компонента, рассчитанное на основании данных параллельных хроматограмм; s 2 - дисперсия полученных результатов.

Результаты хроматографического анализа считаются вероятными, если выполняются условия пригодности хроматографической системы:

Число теоретических тарелок, рассчитанное по соответствующему пику, должно быть не менее требуемого значения;

Коэффициент разделения соответствующих пиков должен быть не менее требуемого значения;

Относительное стандартное отклонение, рассчитанное для высоты или площади соответствующего пика, должно быть не более требуемого значения;

Коэффициент симметрии соответствующего пика должен быть в требуемых пределах.

4.2 За дача : р ассчитать методом внутреннего стандарта содержание анализируемого вещества в пробе (в г и %), если при хроматографировании получены следующие данные: при калибровке: qВ=0,00735, SВ =6,38 смІ, qСТ=0,00869 г, SСТ=8,47 смІ , -при анализе: SВ=9,38 смІ, VВ=47 ммі, qСТ=0,00465 г, SСТ=4,51 смІ

SСТ/SВ = k*(qСТ/ qВ);

k = (SСТ/SВ)/(qСТ/ qВ) = (8,47/6,38)/(0,00869/0,00735) = 1,123;

qВ = k*qСТ*(SВ/SСТ) = 1,123*0,00465*(9,38/4,51) = 0,01086 г.

x, % = k*r*(SВ/SСТ)*100;

r = qСТ/ qВ = 0,00465/0,01086 = 0,4282;

x, % = 1,123*0,4282*(9,38/4,51) = 100%.

5. Фотометрическое титрование

5.1 Фотометрическое титрование. Сущность и условия титрования. Кривые титрования. Преимущества фотометрического титрования в сравнении с прямой фотометрией

Фотометрические и спектрофотометрические измерения можно использовать для фиксирования конечной точки титрования. Конечная точка прямого фотометрического титрования появляется в результате изменения концентрации реагента и продукта реакции или обоих одновременно; очевидно, по меньшей мере, одно из этих веществ должно поглощать свет при выбранной длине волны. Косвенный метод основан на зависимости оптической плотности индикатора от объема титранта.

Рис. 5.1 Типичные кривые фотометрического титрования. Молярные коэффициенты поглощения определяемого вещества, продукта реакции и титранта обозначены символами еs, еp, еt соответственно

Кривые титрования . Кривая фотометрического титрования представляет собой график зависимости исправленной оптической плотности от объема титранта. Если условия выбраны правильно, кривая состоит из двух прямолинейных участков с разным наклоном: один из них соответствует началу титрования, другой - продолжению за точкой эквивалентности. Вблизи точки эквивалентности часто наблюдается заметный перегиб; конечной точкой считают точку пересечения прямолинейных отрезков после экстраполяции.

На рис. 5.1 приведены некоторые типичные кривые титрования. При титровании непоглощающих веществ окрашенным титрантом с образованием бесцветных продуктов в начале титрования получается горизонтальная линия; за точкой эквивалентности оптическая плотность быстро растет (рис. 5.1, кривая а ). При образовании окрашенных продуктов из бесцветных реагентов, наоборот, сначала наблюдается линейный рост оптической плотности, а затем появляется область, в которой поглощение не зависит от объема титранта (рис. 5.1, кривая б ). В зависимости от спектральных характеристик реагентов и продуктов реакции возможны также кривые других форм (рис. 5.1).

Чтобы конечная точка фотометрического титрования была достаточно отчетливой, поглощающая система или системы должны подчиняться закону Бера; в противном случае нарушается линейность отрезков кривой титрования, необходимая для экстраполяции. Необходимо, далее, ввести поправку на изменение объема путем умножения оптической плотности на множитель (V+v)/V, где V - исходный объем раствора, a v - объем добавленного титранта.

Фотометрическое титрование часто обеспечивает более точные результаты, чем прямой фотометрический анализ, так как для определения конечной точки объединяются данные нескольких измерений. Кроме того, при фотометрическом титровании присутствием других поглощающих веществ можно пренебречь, поскольку измеряется только изменение оптической плотности.

5.2 Задача : н авеску дихромата калия массой 0,0284 г растворили в мерной колбе вместимостью 100,00 смі. Оптическая плотность полученного раствора при л max =430 нм равна 0,728 при толщине поглощённого слоя 1 см. вычислить молярную и процентную концентрацию, молярный и удельный коэффициенты поглощения этого раствора

где - оптическая плотность раствора; е - молярный коэффициент поглощения вещества, дм3*моль-1*см-1; с - концентрация поглощающего вещества, моль/дм3; l - толщина поглощающего слоя, см.

где k - удельный коэффициент поглощения вещества, дм3*г-1*см-1.

n(K2Cr2O7) = m(K2Cr2O7)/ M(K2Cr2O7) = 0,0284/294 = 9,67*10-5 (моль);

c(K2Cr2O7) = 9,67*10-5/0,1 = 9,67*10-4(моль/л);

Плотность р-ра K2Cr2O7 примем за 1 г/см3, тогда масса р-ра будет 100 г, отсюда:

щ(NaCl) = 0,0284/100*100 % = 0,0284 %.

е = D/cl =0,728/9,67*10-4*1 = 753 (дм3*моль-1*см-1).

k = D/cl =0,728/0,284 *1 = 2,56(дм3*г-1*см-1).

6. Описать и объяснить возможность использования инструментальных методов анализа (оптических, электрохимических, хроматографических) для качественного и количественного определения хлорида цинка

Хлорид ZnCl2; M=136,29; бц. триг., расплыв; с=2,9125; tпл=318; tкип=732; С°р=71,33; S°=111,5; ДН°=-415,05; ДG°=-369,4; ДНпл=10,25; ДНисп=119,2; у=53,8320; 53,6400; 52,2700; р=1428; 10506; s=2080; 27210; 36720; 40825; 43830; 45340; 47150; 49560; 54980; 614100; х.р.эф.; р.эт. 10012,5, ац. 43,518; пир. 2,620; н.р.ж. NH3.

Хлорид цинка ZnCl2 наиболее изученный из галогенидов, получается растворением цинковой обманки, окиси цинка или металлического цинка в соляной кислоте. Безводный хлорид цинка представляет собой белый зернистый порошок, состоящий из гексагонально-ромбоэдрических кристаллов, легко плавится и при быстром охлаждении застывает в виде прозрачной массы, похожей на фарфор. Расплавленный хлорид цинка довольно хорошо проводит электрический ток. При прокаливании хлорид цинка улетучивается, его пары конденсируются в виде белых игл. Он очень гигроскопичен, но вместе с тем его легко получить безводным. Хлорид цинка кристаллизуется без воды при температуре выше 28°С, а из концентрированных растворов он может быть выделен безводным даже при 10°С. В воде хлорид цинка растворяется с выделением большого количества тепла (15,6 ккал/моль). В разбавленных растворах хлорид цинка хорошо диссоциирует на ионы. Ковалентный характер связи в хлориде цинка проявляется в хорошей растворимости его в метиловом и этиловом спиртах, ацетоне, диэтиловом эфире, глицерине, уксусно-этиловом эфире и других кислородосодержащих растворителях, а также диметилформамиде, пиридине, анилине и других азотосодержащих соединениях основного характера.

Хлорид цинка склонен к образованию комплексных солей, отвечающих общим формулам от Me до Me4, однако наиболее распространенными и устойчивыми являются соли, в которых около атома цинка координируются четыре аниона хлора, и состав большинства солей соответствует формуле Me2. Как показало изучение Раман-спектров, в растворах самого хлорида цинка в зависимости от его концентрации могут присутствовать ионы 2+, ZnCl+(ад), 2-, и не обнаружены ионы - или 2-. Известны и смешанные комплексы, с анионами нескольких кислот. Так, потенциометрическим методам было доказано образование сульфатно-хлоридных комплексов цинка в растворах. Были обнаружены смешанные комплексы: 3-, 4, 5-.

Количественно и качественно ZnCl2 можно определить по Zn2+. Количественно и качественно можно его определить фотометрическим методом по спектру поглощения. Например, с такими реагентами как дитизон, мурексид, арсазен и т.д.

Спектральное определение цинка . Очень удобны для обнаружения цинка спектральные методы анализа. Анализ проводится по группе из трех линий: 3345, 02 I; 3345,57 I 3345,93 I А, из которых первая наиболее интенсивная, или по паре линий: 3302,59 I и 3302,94 I А.





Copyright © 2024 Медицина и здоровье. Онкология. Питание для сердца.