Как решить квадратное уравнение с тангенсом. Основные методы решения тригонометрических уравнений. Решение простейших тригонометрических уравнений

Урок и презентация на тему: "Решение простейших тригонометрических уравнений"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
Решаем задачи по геометрии. Интерактивные задания на построение в пространстве
Программная среда "1С: Математический конструктор 6.1"

Что будем изучать:
1. Что такое тригонометрические уравнения?

3. Два основных метода решения тригонометрических уравнений.
4. Однородные тригонометрические уравнения.
5. Примеры.

Что такое тригонометрические уравнения?

Ребята, мы с вами изучили уже арксинуса, арккосинус, арктангенс и арккотангенс. Теперь давайте посмотрим на тригонометрические уравнения в общем.

Тригонометрические уравнения – уравнения в котором переменная содержится под знаком тригонометрической функции.

Повторим вид решения простейших тригонометрических уравнений:

1)Если |а|≤ 1, то уравнение cos(x) = a имеет решение:

X= ± arccos(a) + 2πk

2) Если |а|≤ 1, то уравнение sin(x) = a имеет решение:

3) Если |а| > 1, то уравнение sin(x) = a и cos(x) = a не имеют решений 4) Уравнение tg(x)=a имеет решение: x=arctg(a)+ πk

5) Уравнение ctg(x)=a имеет решение: x=arcctg(a)+ πk

Для всех формул k- целое число

Простейшие тригонометрические уравнения имеют вид: Т(kx+m)=a, T- какая либо тригонометрическая функция.

Пример.

Решить уравнения: а) sin(3x)= √3/2

Решение:

А) Обозначим 3x=t, тогда наше уравнение перепишем в виде:

Решение этого уравнения будет: t=((-1)^n)arcsin(√3 /2)+ πn.

Из таблицы значений получаем: t=((-1)^n)×π/3+ πn.

Вернемся к нашей переменной: 3x =((-1)^n)×π/3+ πn,

Тогда x= ((-1)^n)×π/9+ πn/3

Ответ: x= ((-1)^n)×π/9+ πn/3, где n-целое число. (-1)^n – минус один в степени n.

Ещё примеры тригонометрических уравнений.

Решить уравнения: а) cos(x/5)=1 б)tg(3x- π/3)= √3

Решение:

А) В этот раз перейдем непосредственно к вычислению корней уравнения сразу:

X/5= ± arccos(1) + 2πk. Тогда x/5= πk => x=5πk

Ответ: x=5πk, где k – целое число.

Б) Запишем в виде: 3x- π/3=arctg(√3)+ πk. Мы знаем что: arctg(√3)= π/3

3x- π/3= π/3+ πk => 3x=2π/3 + πk => x=2π/9 + πk/3

Ответ: x=2π/9 + πk/3, где k – целое число.

Решить уравнения: cos(4x)= √2/2. И найти все корни на отрезке .

Решение:

Решим в общем виде наше уравнение: 4x= ± arccos(√2/2) + 2πk

4x= ± π/4 + 2πk;

X= ± π/16+ πk/2;

Теперь давайте посмотрим какие корни попадут на наш отрезок. При k При k=0, x= π/16, мы попали в заданный отрезок .
При к=1, x= π/16+ π/2=9π/16, опять попали.
При k=2, x= π/16+ π=17π/16, а тут вот уже не попали, а значит при больших k тоже заведомо не будем попадать.

Ответ: x= π/16, x= 9π/16

Два основных метода решения.

Мы рассмотрели простейшие тригонометрические уравнения, но существуют и более сложные. Для их решения применяют метод ввода новой переменной и метод разложения на множители. Давайте рассмотрим примеры.

Решим уравнение:

Решение:
Для решения нашего уравнения воспользуемся методом ввода новой переменной, обозначим: t=tg(x).

В результате замены получим: t 2 + 2t -1 = 0

Найдем корни квадратного уравнения: t=-1 и t=1/3

Тогда tg(x)=-1 и tg(x)=1/3, получили простейшее тригонометрическое уравнение, найдем его корни.

X=arctg(-1) +πk= -π/4+πk; x=arctg(1/3) + πk.

Ответ: x= -π/4+πk; x=arctg(1/3) + πk.

Пример решения уравнения

Решить уравнений: 2sin 2 (x) + 3 cos(x) = 0

Решение:

Воспользуемся тождеством: sin 2 (x) + cos 2 (x)=1

Наше уравнение примет вид:2-2cos 2 (x) + 3 cos (x) = 0

2 cos 2 (x) - 3 cos(x) -2 = 0

Введем замену t=cos(x): 2t 2 -3t - 2 = 0

Решением нашего квадратного уравнения являются корни: t=2 и t=-1/2

Тогда cos(x)=2 и cos(x)=-1/2.

Т.к. косинус не может принимать значения больше единицы, то cos(x)=2 не имеет корней.

Для cos(x)=-1/2: x= ± arccos(-1/2) + 2πk; x= ±2π/3 + 2πk

Ответ: x= ±2π/3 + 2πk

Однородные тригонометрические уравнения.

Определение: Уравнение вида a sin(x)+b cos(x) называются однородными тригонометрическими уравнениями первой степени.

Уравнения вида

однородными тригонометрическими уравнениями второй степени.

Для решения однородного тригонометрического уравнения первой степени разделим его на cos(x): Делить на косинус нельзя если он равен нулю, давайте убедимся что это не так:
Пусть cos(x)=0, тогда asin(x)+0=0 => sin(x)=0, но синус и косинус одновременно не равны нулю, получили противоречие, поэтому можно смело делить на ноль.

Решить уравнение:
Пример: cos 2 (x) + sin(x) cos(x) = 0

Решение:

Вынесем общий множитель: cos(x)(c0s(x) + sin (x)) = 0

Тогда нам надо решить два уравнения:

Cos(x)=0 и cos(x)+sin(x)=0

Cos(x)=0 при x= π/2 + πk;

Рассмотрим уравнение cos(x)+sin(x)=0 Разделим наше уравнение на cos(x):

1+tg(x)=0 => tg(x)=-1 => x=arctg(-1) +πk= -π/4+πk

Ответ: x= π/2 + πk и x= -π/4+πk

Как решать однородные тригонометрические уравнения второй степени?
Ребята, придерживайтесь этих правил всегда!

1. Посмотреть чему равен коэффициент а, если а=0 то тогда наше уравнение примет вид cos(x)(bsin(x)+ccos(x)), пример решения которого на предыдущем слайде

2. Если a≠0, то нужно поделить обе части уравнения на косинус в квадрате, получим:


Делаем замену переменной t=tg(x) получаем уравнение:

Решить пример №:3

Решить уравнение:
Решение:

Разделим обе части уравнения на косинус квадрат:

Делаем замену переменной t=tg(x): t 2 + 2 t - 3 = 0

Найдем корни квадратного уравнения: t=-3 и t=1

Тогда: tg(x)=-3 => x=arctg(-3) + πk=-arctg(3) + πk

Tg(x)=1 => x= π/4+ πk

Ответ: x=-arctg(3) + πk и x= π/4+ πk

Решить пример №:4

Решить уравнение:

Решение:
Преобразуем наше выражение:


Решать такие уравнение мы умеем: x= - π/4 + 2πk и x=5π/4 + 2πk

Ответ: x= - π/4 + 2πk и x=5π/4 + 2πk

Решить пример №:5

Решить уравнение:

Решение:
Преобразуем наше выражение:


Введем замену tg(2x)=t:2 2 - 5t + 2 = 0

Решением нашего квадратного уравнения будут корни: t=-2 и t=1/2

Тогда получаем: tg(2x)=-2 и tg(2x)=1/2
2x=-arctg(2)+ πk => x=-arctg(2)/2 + πk/2

2x= arctg(1/2) + πk => x=arctg(1/2)/2+ πk/2

Ответ: x=-arctg(2)/2 + πk/2 и x=arctg(1/2)/2+ πk/2

Задачи для самостоятельного решения.

1) Решить уравнение

А) sin(7x)= 1/2 б) cos(3x)= √3/2 в) cos(-x) = -1 г) tg(4x) = √3 д) ctg(0.5x) = -1.7

2) Решить уравнения: sin(3x)= √3/2. И найти все корни на отрезке [π/2; π ].

3) Решить уравнение: ctg 2 (x) + 2ctg(x) + 1 =0

4) Решить уравнение: 3 sin 2 (x) + √3sin (x) cos(x) = 0

5) Решить уравнение:3sin 2 (3x) + 10 sin(3x)cos(3x) + 3 cos 2 (3x) =0

6)Решить уравнение:cos 2 (2x) -1 - cos(x) =√3/2 -sin 2 (2x)

Тема урока: «Решение тригонометрических уравнений, методом введения новой переменной»

Тип урока: урок изучения нового материала

Цели урока: Образовательная: закрепить знания и умения решения простейших

тригонометрических уравнений, научить решать тригонометрические уравнения

методом введения новой переменной.

Развивающая: развить умение решения тригонометрических уравнений, развить

способность быстро и верно определять тип уравнения и способ его решения.

Воспитательная: формировать культуру труда и уважения друг к другу.

План урока: 1. Организационный момент.

2. Проверка домашнего задания.

3. Актуализация знаний.

4. Изучение нового материала.

5. Закрепление нового материала.

6. Физкультминутка.

7. Первичный контроль знаний.

8. Подведение итогов.

9. Рефлексия.

10. Домашнее задание.

Ход урока.

1. Организационный момент .

2. Проверка домашнего задания. 18 № 13(в)

3. Актуализация знаний. Решить уравнение:

sin x = 0

cos х = 1

cos х = 2

tg x =

с tg х = 0

    1. х 2 + 3х =0

      х 2 – 9 = 0

      2 + 29 = 0

      х 2 +5х +6 = 0

      х 4 +2х 2 – 3 = 0

Как называются уравнения, записанные в левой колонке? в правой колонке?

Какими методами применяли для решения уравнений, левой колонки?

sin 2 x - 6 sin x + 5 =0

Как вы думаете, а какая тема урока будет сегодня?

Открыли тетради записали число, классная работа, тема урока: « Решение тригонометрических уравнений, методом введения новой переменной».

Какую цель поставим на урок? Научить решать тригонометрические уравнения, методом замены переменной.

4. Изучение нового материала.

На данном занятии будут рассмотрены наиболее часто встречающийся метод решения тригонометрических уравнений.

Тригонометрические уравнения, приводимые к квадратным .

К этому классу могут быть отнесены уравнения, в которые входят одна функция (синус или косинус, тангенс или котангенс) или две функции одного аргумента, но одна их них с помощью основных тригонометрических тождеств сводится ко второй. а sin 2 x + bsin x + c =0, a .

Например, если c о s х входит в уравнение в четных степенях, то заменяем его на 1- sin 2 x , если sin 2 x , то его заменяем на 1- cos 2 x .

5. Закрепление нового материала.

Пример.

Решить уравнение: sin 2 x - 6 sin x + 5 =0, 2 sin 2 х - 3 cos х -3 = 0 .

6. Физкультминутка.

Задание для снятия утомляемости глаз: нельзя водить руками, а лишь только глазами В таблице расположены числа от 1 до 20, но четыре числа пропущены. Ваша задача: назвать эти числа.

7. Первичный контроль

Работа в парах: решить уравнение:

1. 3tg 2 x +2 tg x-1=0;

2. 5sin 2 x+ 6cos x -6 = 0.

Обсуждаем решения уравнений, решаем, а затем проверяем решения с доской.

1. 3 tg 2 x +2 tg x -1= 0

Пусть tg x = t .

3 t 2 + 2 t – 1 = 0

D = 16

t 1 = , t 2 = -1.

tg x = или tg x = -1

х = arctg + Z x = - + Z

2. 5 sin 2 x + 6cos x - 6 = 0

5( 1 - с os 2 x ) + 6cos x - 6 = 0

5 cos 2 x - 6cos x +1 = 0

Пусть cos x =t.

5 t 2 - 6 t + 1 = 0

D = 16

t 1 = , t 2 = 1.

Вернёмся к исходной переменной:

cos x = или cos x = 1

х = arccos + Z x = Z

8. Закрепление.

Решите уравнения:

1. 2 с tg 2 x + 3 с tg x + 3= 5;

2. 2sin 2 - sin х + 2 = 3.

1. Решите уравнение 2 cos 2 x - 3 cos (x ) - 3 = 0. Укажите корни, принадлежащие отрезку [ - ; ].

2. 3tg x - 2 с tg x = 5

Каждый вариант решает уравнения и сверяется с ответами на доске. За эту работу ребята себя сами оценивают. Листочки с решениями сдают. На следующем уроке объявлю оценки за эту работу.

8. Подведение итогов .

Вспомните: Какая тема урока? Какую цель мы сегодня поставили на урок? Достигли ли нашей цели?

9. Рефлексия.

"На сегодняшнем уроке я разобрался…";

"Я похвалил бы себя…";

"Особенно мне понравилось…";

"Сегодня мне удалось…";

"Я сумел…";

"Было трудно…";

"Я понял, что…";

"Теперь я могу…";

"Я почувствовал, что…";

"Я научился…";

"Меня удивило…"

10. Домашнее задание.

1) §18, № 6(в), 8(б), 9(а), 21(а).

2) §18, № 7(б), 9(г). Задачи №1 или 2.

1. Решите уравнение + 4 tg x - 6 = 0. Укажите корни, принадлежащие отрезку [ ; ].

2. = 0.

Работа в парах

1. 3 tg 2 x +2 tg x -1=0;

2. 5 sin 2 x + 6 cos x -6 = 0.

Работа в парах

1. 3tg 2 x +2 tg x-1=0;

2. 5sin 2 x+ 6cos x -6 = 0.

Работа в парах

1. 3 tg 2 x +2 tg x -1=0;

2. 5 sin 2 x + 6 cos x -6 = 0.

Работа в парах

1. 3 tg 2 x +2 tg x -1=0;

2. 5 sin 2 x + 6 cos x -6 = 0.

Работа в парах

1. 3tg 2 x +2 tg x-1=0;

2. 5sin 2 x+ 6cos x -6 = 0.

Домашнее задание:

1. Решите уравнение + 4 tg x

[ ; ].

2. Решите уравнение

Домашнее задание:

1. Решите уравнение + 4 tg x - 6 = 0. Укажите корни, принадлежащие отрезку

[ ; ].

2. Решите уравнение

Домашнее задание:

1. Решите уравнение + 4 tg x - 6 = 0. Укажите корни, принадлежащие отрезку

[ ; ].

2. Решите уравнение

Домашнее задание:

1. Решите уравнение + 4 tg x - 6 = 0. Укажите корни, принадлежащие отрезку

[ ; ].

2. Решите уравнение

Домашнее задание:

1. Решите уравнение + 4 tg x - 6 = 0. Укажите корни, принадлежащие отрезку

[ ; ].

2. Решите уравнение

Домашнее задание:

1. Решите уравнение + 4 tg x - 6 = 0. Укажите корни, принадлежащие отрезку

[ ; ].

2. Решите уравнение

Домашнее задание:

1. Решите уравнение + 4 tg x - 6 = 0. Укажите корни, принадлежащие отрезку

[ ; ].

2. Решите уравнение

Домашнее задание:

1. Решите уравнение + 4 tg x - 6 = 0. Укажите корни, принадлежащие отрезку

[ ; ].

2. Решите уравнение

Домашнее задание:

1. Решите уравнение + 4 tg x - 6 = 0. Укажите корни, принадлежащие отрезку

[ ; ].

2. Решите уравнение

Домашнее задание:

1. Решите уравнение + 4 tg x - 6 = 0. Укажите корни, принадлежащие отрезку

[ ; ].

2. Решите уравнение

Основными методами решения тригонометрических уравнений являются: сведение уравнений к простейшим (с использованием тригонометрических формул), введение новых переменных, разложение на множители. Рассмотрим их применение на примерах. Обратите внимание на оформление записи решений тригонометрических уравнений.

Необходимым условием успешного решения тригонометрических уравнений является знание тригонометрических формул (тема 13 работы 6).

Примеры.

1. Уравнения, сводящиеся к простейшим.

1) Решить уравнение

Решение:

Ответ:

2) Найти корни уравнения

(sinx + cosx) 2 = 1 – sinxcosx, принадлежащие отрезку .

Решение:

Ответ:

2. Уравнения, сводящиеся к квадратным.

1) Решить уравнение 2 sin 2 x – cosx –1 = 0.

Решение: Используя формулу sin 2 x = 1 – cos 2 x, получаем

Ответ:

2) Решить уравнение cos 2x = 1 + 4 cosx.

Решение: Используя формулу cos 2x = 2 cos 2 x – 1, получаем

Ответ:

3) Решить уравнение tgx – 2ctgx + 1 = 0

Решение:

Ответ:

3. Однородные уравнения

1) Решить уравнение 2sinx – 3cosx = 0

Решение: Пусть cosx = 0, тогда 2sinx = 0 и sinx = 0 – противоречие с тем, что sin 2 x + cos 2 x = 1. Значит cosx ≠ 0 и можно поделить уравнение на cosx. Получим

Ответ:

2) Решить уравнение 1 + 7 cos 2 x = 3 sin 2x

Решение:

Используем формулы 1 = sin 2 x + cos 2 x и sin 2x = 2 sinxcosx, получим

sin 2 x + cos 2 x + 7cos 2 x = 6sinxcosx
sin 2 x – 6sinxcosx+ 8cos 2 x = 0

Пусть cosx = 0, тогда sin 2 x = 0 и sinx = 0 – противоречие с тем, что sin 2 x + cos 2 x = 1.
Значит cosx ≠ 0 и можно поделить уравнение на cos 2 x. Получим

tg 2 x – 6 tgx + 8 = 0
Обозначим tgx = y
y 2 – 6 y + 8 = 0
y 1 = 4; y 2 = 2
а) tgx = 4, x= arctg4 + 2 k , k
б) tgx = 2, x= arctg2 + 2 k , k .

Ответ: arctg4 + 2 k , arctg2 + 2 k, k

4. Уравнения вида a sinx + b cosx = с, с ≠ 0.

1) Решить уравнение .

Решение:

Ответ:

5. Уравнения, решаемые разложением на множители.

1) Решить уравнение sin2x – sinx = 0.

Корнем уравнения f ( х ) = φ ( х ) может служить только число 0. Проверим это:

cos 0 = 0 + 1 – равенство верно.

Число 0 единственный корень данного уравнения.

Ответ: 0.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Краткое изложение теоретических вопросов дифференцированного зачета

Для студентов 1 курса

Специальности 23.02.03 «Техническое обслуживание и ремонт автомобильного транспорта»

Уравнение. Корень уравнения. Что значит «решить уравнение»?

Уравнение – это равенство, содержащее переменную.

Корень уравнения - такое значение переменной, которое при подстановке его в уравнение, обращает его в верное числовое равенство.

Решить уравнение – это значит найти все его корни или доказать, что корней нет.

Система уравнений – это совокупность из двух и более уравнений с двумя и более неизвестными; причём решение одного из уравнений является одновременно и решением всех остальных.

Виды уравнений и их решение: линейное, квадратное.

Линейные уравнения – это уравнения вида: ах + b = 0, где a и b – некоторые постоянные. Если а не равно нулю, то уравнение имеет один единственный корень: х = - b: а. Если а равно нулю и b равно нулю, то корнем уравнения ах + b = 0 является любое число. Если а равно нулю, а b не равно нулю, то уравнение ах + b = 0 не имеет корней.

Способы решения линейных уравнений

1) тождественные преобразования

2) графический способ.

Квадратное уравнение - это уравнение вида ax 2 + bx + c = 0, где коэффициенты a , b и c - произвольные числа, причем a ≠ 0.

Пусть дано квадратное уравнение ax 2 + bx + c = 0. Тогда дискриминант - это число D = b 2 − 4ac .

1. Если D < 0, корней нет;

2. Если D = 0, есть ровно один корень;

3. Если D > 0, корней будет два.

Если дискриминант D > 0, корни можно найти по формулам: Корни квадратного уравнения. Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

Решение простейших тригонометрических уравнений

Общий вид решения уравнения cos x = a, где | a | ≤ 1, определяется формулой:

x = ± arccos(a) + 2πk, k ∈ Z (целые числа), при | a | > 1 уравнение cos x = a не имеет решений среди вещественных чисел.

Общий вид решения уравнения sin x = a, где | a | ≤ 1, определяется формулой:



x = (- 1)k · arcsin(a) + πk, k ∈ Z (целые числа), при | a | > 1 уравнение sin x = a не имеет решений среди вещественных чисел.

Общий вид решения уравнения tg x = a определяется формулой:

x = arctg(a) + πk, k ∈ Z (целые числа).

Общий вид решения уравнения ctg x = a определяется формулой:

x = arcctg(a) + πk, k ∈ Z (целые числа).

Решение линейных тригонометрических уравнений

Линейные тригонометрические уравнения имеют вид k*f(x) + b = 0, где f(x) – тригонометрическая функция, а k и b - действительные числа.

Для решения уравнения его приводят к простейшему виду путем тождественных преобразований

Решение линейно – комбинированных тригонометрических уравнений

Линейно - комбинированные тригонометрические уравнения имеют вид f(kx + b) = а, где f(x) – тригонометрическая функция, а, k и b - действительные числа.

Для решения уравнения его вводят новую переменную у = kx + b. Решают полученное простейшее тригонометрическое уравнение относительно у и производят обратную замену.

Решение тригонометрических уравнений с использованием формул приведения

Решение тригонометрических уравнений с использованием тригонометрических тождеств

При решении тригонометрических уравнений, не являющихся простейшими, выполняются тождественные преобразования по следующим формулам:

Решение квадратных тригонометрических уравнений

Отличительные признаки уравнений, сводящихся к квадратным:

В уравнении присутствуют тригонометрические функции от одного аргумента или они легко сводятся к одному аргументу.

В уравнении присутствует только одна тригонометрическая функция или все функции можно свести к одной.

Алгоритм решения:

Выполняется подстановка.

Выполняется преобразование выражения.

Вводится обозначение (например, sinx = y).

Решается квадратное уравнение.

Подставляется значение обозначенной величины, и решается тригонометрическое уравнение





Copyright © 2024 Медицина и здоровье. Онкология. Питание для сердца.