Условия при которых осуществляется опыт штерна. Измерение скоростей газовых молекул. Опыт Штерна. Распределение Максвелла. Барометрическая формула. Распределение Больцмана

1 - платиновая проволока с нанесённым на неё слоем серебра; 2 - щель, формирующая пучок атомов серебра; 3 - пластинка, на которой осаждаются атомы серебра; П и П1 - положения полосок осажденного серебра при неподвижном приборе и при вращении прибора.

Для проведения опыта Штерном был подготовлен прибор, состоящий из двух цилиндров разного радиуса, ось которых совпадала и на ней располагалась платиновая проволока с нанесённым слоем серебра . В пространстве внутри цилиндров посредством непрерывной откачки воздуха поддерживалось достаточно низкое давление . При пропускании электрического тока через проволоку достигалась температура плавления серебра, из-за чего серебро начинало испаряться и атомы серебра летели к внутренней поверхности малого цилиндра равномерно и прямолинейно со скоростью v {\displaystyle v} , определяемой температурой нагрева платиновой проволоки, то есть температурой плавления серебра. Во внутреннем цилиндре была проделана узкая щель, через которую атомы могли беспрепятственно пролетать далее. Стенки цилиндров специально охлаждались, что способствовало оседанию попадающих на них атомов. В таком состоянии на внутренней поверхности большого цилиндра образовывалась достаточно чёткая узкая полоса серебряного налёта, расположенная прямо напротив щели малого цилиндра. Затем всю систему начинали вращать с некой достаточно большой угловой скоростью ω {\displaystyle \omega } . При этом полоса налёта смещалась в сторону, противоположную направлению вращения, и теряла чёткость. Измерив смещение s {\displaystyle s} наиболее тёмной части полосы от её положения, когда система покоилась, Штерн определил время полёта, через которое нашёл скорость движения молекул:

t = s u = l v ⇒ v = u l s = ω R b i g (R b i g − R s m a l l) s {\displaystyle t={\frac {s}{u}}={\frac {l}{v}}\Rightarrow v={\frac {ul}{s}}={\frac {\omega R_{big}(R_{big}-R_{small})}{s}}} ,

где s {\displaystyle s} - смещение полосы, l {\displaystyle l} - расстояние между цилиндрами, а u {\displaystyle u} - скорость движения точек внешнего цилиндра.

Найденная таким образом скорость движения атомов серебра (584 м/с) совпала со скоростью, рассчитанной по законам молекулярно-кинетической теории, а тот факт, что получившаяся полоска была размытой, свидетельствовал в пользу того, что скорости атомов различны и распределены по некоторому закону - закону распределения Максвелла : атомы, двигавшиеся быстрее, смещались относительно полосы, полученной в состоянии покоя, на меньшие расстояния, чем те, которые двигались медленнее. При этом опыт давал лишь приблизительные сведения о характере распределения Максвелла, более точное экспериментальное подтверждение относится к 1930 году (

В разделе на вопрос опыт Штерна? расскажите кратко самое главное заданный автором Просыпать лучший ответ это Опыт Штерна - опыт, впервые проведённый немецким физиком Отто Штерном в 1920 году. Опыт явился одним из первых практических доказательств состоятельности молекулярно-кинетической теории строения вещества. В нём были непосредственно измерены скорости теплового движения молекул и подтверждено наличие распределения молекул газов по скоростям.
Для проведения опыта Штерном был подготовлен прибор, состоящий из двух цилиндров разного радиуса, ось которых совпадала и на ней располагалась платиновая проволока с нанесённым слоем серебра. В пространстве внутри цилиндров посредством непрерывной откачки воздуха поддерживалось достаточно низкое давление. При пропускании электрического тока через проволоку достигалась температура плавления серебра, из-за чего атомы начинали испаряться и летели к внутренней поверхности малого цилиндра равномерно и прямолинейно со скоростью v, соответствующей подаваемому на концы нити напряжению. Во внутреннем цилиндре была проделана узкая щель, через которую атомы могли беспрепятственно пролетать далее. Стенки цилиндров специально охлаждались, что способствовало «оседанию» попадающих на них атомов. В таком состоянии на внутренней поверхности большого цилиндра образовывалась достаточно чёткая узкая полоса серебряного налёта, расположенная прямо напротив щёли малого цилиндра. Затем всю систему начинали вращать с некой достаточно большой угловой скоростью ω. При этом полоса налёта смещалась в сторону, противоположенную направлению вращения, и теряла чёткость. Измерив смещение s наиболее тёмной части полосы от её положения, когда система покоилась, Штерн определил время полёта, через которое нашёл скорость движения молекул:

,
где s - смещение полосы, l - расстояние между цилиндрами, а u - скорость движения точек внешнего цилиндра.
Найденная таким образом скорость движения атомов серебра совпала со скоростью, рассчитанной по законам молекулярно-кинетической теории, а тот факт, что получившаяся полоска была размытой, свидетельствовал в пользу того, что скорости атомов различны и распределены по некоторому закону - закону распределения Максвелла: атомы, двигавшиеся быстрее, смещались относительно полосы, полученной в состоянии покоя, на меньшие расстояния, чем те, которые двигались медленнее
Ключник
Профи
(641)
выбирать надо, а ты что хотел?

БРОУН Роберт (), английский ботаник Описал ядро растительной клетки и строение семяпочки. В 1828 опубликовал "Краткий отчет о наблюдениях в микроскоп...", в котором описал открытое им движение броуновских частиц. Описал ядро растительной клетки и строение семяпочки. В 1828 опубликовал "Краткий отчет о наблюдениях в микроскоп...", в котором описал открытое им движение броуновских частиц.


Броуновское движение - это тепловое движение взвешенных в жидкости или газе частиц год – наблюдал явление, рассматривая в микроскоп взвешенные в воде споры плауна. Броуновское движение никогда не прекращается, частицы движутся беспорядочно. Это тепловое движение.






ПЕРРЕН Жан Батист (), французский физик. Экспериментальные исследования Перреном броуновского движения () окончательно доказали реальность существования молекул. Нобелевская премия (1926).


Опыты Перрена Наблюдал броуновские частицы в очень тонких слоях жидкости Сделал вывод, что концентрация частиц в поле силы тяжести должна убывать с высотой по такому же закону, что и концентрация молекул газа. Преимущество - масса броуновских частиц за счёт большой массы происходит быстрее. На основе подсчёта этих частиц на разных высотах определив постоянную Авогадро новым способом.


МАКСВЕЛЛ Джеймс Клерк ((), английский физик, создатель классической электродинамики, один из основоположников статистической физики Максвелл первым высказал утверждение о статистическом характере законов природы. В 1866 им открыт первый статистический закон закон распределения молекул по скоростям (Максвелла распределение).


БОЛЬЦМАН Людвиг (), австрийский физик, один из основателей статистической физики и физической кинетики. Вывел функцию распределения, названную его именем, и основное кинетическое уравнение газов. Больцман обобщил закон распределения скоростей молекул в газах, находящихся во внешнем силовом поле, и установил формулу распределения молекул газа по координатам при наличии произвольного потенциального поля ().


ШТЕРН Отто (), физик. Родился в Германии, с 1933 жил в США. Отто Штерн измерил (1920) скорость теплового движения молекул газа (опыт Штерна). Экспериментальное определение скоростей теплового движения молекул газа, осуществленное О. Штерно м подтвердил правильность основ кинетической теории газов. Нобелевская премия, 1943 год.






Опыт Штерна Цилиндры начинали вращать с постоянной угловой скоростью. Теперь атомы, прошедшие сквозь прорезь, оседали уже не прямо напротив щели, а смещались на некоторое расстояние, так как за время их полёта внешний цилиндр успевал повернуться на некоторый угол. При вращении цилиндров с постоянной скоростью, положение полоски, образованной атомами на внешнем цилиндре, смещалось на некоторое расстояние.


Опыт Штерна Зная величины радиусов цилиндров, скорость их вращения и величину смещения легко найти скорость движения атомов. Время полета атома t от прорези до стенки внешнего цилиндра можно найти, разделив путь, пройденный атомом и равный разности радиусов цилиндров, на скорость атома v. За это время цилиндры повернулись на угол φ, величину которого найдем, умножив угловую скорость ω на время t. Зная величину угла поворота и радиус внешнего цилиндра R 2, легко найти величину смещения L и получить выражение, из которого можно выразить скорость движения атома


Подумайте … Многократные повторения опыта Штерна позволили установить, что с увеличением температуры участок полосы с максимальной толщиной смещается к началу. Что это значит? Ответ: при увеличении температуры скорости молекул возрастают, и тогда наиболее вероятная скорость находится в области высоких температур.

правильность основ кинетической теории газов . Исследуемым газом в опыте служили разреженные пары серебра, которые получались при испарении слоя серебра, нанесённого на платиновую проволоку, нагревавшуюся электрическим током. Проволока располагалась в сосуде, из которого воздух был откачан, поэтому атомы серебра беспрепятственно разлетались во все стороны от проволоки. Для получения узкого пучка летящих атомов на их пути была установлена преграда со щелью, через которую атомы попадали на латунную пластинку, имевшую комнатную температуру. Атомы серебра осаждались на ней в виде узкой полоски, образуя серебряное изображение щели. Специальным устройством весь прибор приводился в быстрое вращение вокруг оси, параллельной плоскости пластинки. Вследствие вращения прибора атомы попадали в др. место пластинки: пока они пролетали расстояние l от щели до пластинки, пластинка смещалась. Смещение растет с угловой скоростью w прибора и уменьшается с ростом скорости v атомов серебра. Зная w и l , можно определить v. Т. к. атомы движутся с различными скоростями, полоска при вращении прибора размывается, становится шире. Плотность осадка в данном месте полоски пропорциональна числу атомов, движущихся с определённой скоростью. Наибольшая плотность соответствует наиболее вероятной скорости атомов. Полученные в Штерна опыт значения наиболее вероятной скорости хорошо согласуются с теоретическим значением, полученным на основе Максвелла распределения молекул по скоростям.

Статья про слово "Штерна опыт " в Большой Советской Энциклопедии была прочитана 5743 раз

Лекция 15

Молекулярная физика

Вопросы

1. Закон Максвелла распределения молекул идеального газа по скоростям и энергиям.

2. Идеальный газ в однородном поле тяготения.

Барометрическая формула. Распределение Больцмана.

3. Среднее число столкновений и средняя длина свободного пробега молекул.

4. Явления переноса в газах.

1. Закон Максвелла распределения молекул

идеального газа по скоростям и энергиям

В газе, находящемся в состоянии равновесия, устанавливается стационарное распределение молекул по скоростям, подчиняющееся закону Максвелла.

Уравнение Клаузиуса
, (1)

Уравнение Менделеева – Клапейрона


(2)






, (3)

т.е. средняя квадратичная скорость пропорциональна корню квадратному от абсолютной температуры газа .

Закон Максвелла описывается функцией f (v ), называемойфункцией распределения молекул по скоростям . Если разбить диапазон скоростей молекул на малые интервалы, равные dv , то на каждый интервал скорости будет приходиться некоторое число молекул dN (v ), имеющих скорость, заключенную в этом интервале. Функцияf (v ) определяет относительное число молекул dN (v )/N, скорости которых лежат в интервале отv доv+ dv , т.е.

максвелловская функция распределения по скоростям

, откуда
.

Применяя методы теории вероятностей, Максвелл нашел функцию f (v ) –закон для распределения молекул идеального газа по скоростям:

. (4)

Относительное число молекул dN (v )/N , скорости которых лежат в интервале отv доv+ dv , находится как площадь полоски dS . Площадь, ограниченная кривой распределения и осью абсцисс, равна единице. Это означает, что функцияf (v ) удовлетворяет условию нормировки

. (5)

Наиболее вероятной скоростью v в называется скорость, вблизи которой на единичный интервал скорости приходится наибольшее число молекул.

Средняя скорость молекулы (средняя арифметическая скорость):

(7)

Средняя квадратичная скорость
(8)

Из формулы (6) следует, что при повышении температуры максимум функ­ции распределения молекул по скоростям сме­щается вправо (значение наиболее веро­ят­ной скорости становится больше). Однако пло­­щадь, ограниченная кривой, остается неизменной, поэтому при повышении температуры кривая распределения молекул по скоростям растягивается и понижается.

Опыт Штерна

Вдоль оси внутреннего цилиндра со щелью натянута платиновая проволока, покры­тая слоем серебра, которая нагре­ва­ется током при откачанном воздухе. При на­гре­вании серебро испаряется. Атомы серебра, вылетая через щель, попадают на внутреннюю поверхность второго цилин­дра, давая изображение щели. Если при­бор привести во вращение вокруг общей оси цилиндров, то атомы серебра осядут не против щели, а сместятся на некоторое расстояние. Изображение щели получается размытым. Исследуя толщину осажденного слоя, можно оценить распределение молекул по скоростям, которое соответствует максвелловскому рас­пре­делению.



. (9)

2. Идеальный газ в однородном поле тяготения. Барометрическая формула. Распределение Больцмана

Если бы не было теплового движения, то все молекулы атмосферного воздуха упали бы на Землю; если бы не было тяготения, то атмосферный воздух рассеялся бы по всей Вселенной. Тяготение и тепловое движение приводят газ в состояние, при котором его концентрация и давление убывают с высотой.

Получим закон изменения давления с высотой.

Разность давлений р иp+ dp равна весу газа, заключенному в объеме цилиндра с площадью основания, равной единице, и высотой dh

p – (p + dp ) = g dh
dp = – g dh (10)

Из уравнения состояния идеального газа:

(11)

(11)
(10)







, (12)

где р ир 0 – давления газа на высотахh иh = 0.

Формула (12) называется барометри­ческой . Из нее следует, что давление убывает с высотой по экспоненциальному закону.

Барометрическая формула позволяет определять высоту h с помощью барометра. Барометр, специально проградуированный, для непосредственного отсчета высоты над уровнем моря называютальтиметром . Его широко применяют в авиации, при восхождении на горы.

Обобщение барометрической формулы

, так как
.








, распределениеБольцмана(13)

где n иn 0 – концентрации молекул на высотахh 0 иh = 0 соответственно.

Частные случаи

1.

, т.е. тепловое движение стремится разбросать частицы равномерно по всему объему.

2.

(отсутствие теплового движения), т.е. все частицы занимали бы состояние с минимальной (нулевой) потенциальной энергией (в случае поля тяготения Земли молекулы собирались бы на поверхности Земли).

3. Среднее число столкновений и средняя длина свободного пробега молекул

Средней длиной свободного пробега молекул называется путь, который проходит молекула между двумя последовательными столкновениями с другими молекулами.

Эффективным диаметром молекулы d называют то наименьшее расстояние, на которое сближаются при столкновении центры двух молекул.





Copyright © 2024 Медицина и здоровье. Онкология. Питание для сердца.