Кто такие эукариоты и прокариоты: сравнительная характеристика клеток разных царств. Эукариотические клетки Строение про и эукариотической клетки

Клетки, имеющие ядерное строение, называются ядерными или эукариотическими клетками. Большинство животных и растений - эукариоты.

Происхождение

Существует три теории происхождения эукариот:

  • симбиогенез;
  • инвагинагенез;
  • химерная теория.

Согласно симбиотической теории происхождения эукариоты возникли путём поглощения прокариот более крупными прокариотами. Этим объясняется нахождение наполовину автономных органелл (содержат ДНК) - митохондрий и пластид.

Инвагинационная теория предполагает, что эукариоты возникли путём впячивания мембраны внутрь прокариотической клетки. Из отделившихся пузырьков сформировались различные органеллы.

Химерное образование эукариот - слияние нескольких прокариот. Слившиеся клетки обменивались генетической информацией.

ТОП-4 статьи которые читают вместе с этой

Мембрана

Снаружи находится плазматическая мембрана эукариотической клетки или плазмалемма, которая осуществляет выборочную взаимосвязь органелл с внешней средой. Поверхностная мембрана имеет жидко-мозаичную структуру, образованную :

  • двумя слоями липидов (внешним и внутренним);
  • белками (60 % мембраны).

Липиды имеют гидрофильные головки и гидрофобные хвостики, которые обращены внутрь мембраны. Липиды плотно прилегают друг к другу, что обеспечивает мембране эластичность. Жёсткость придаёт встроенный в хвостики холестерин. Липиды защищают и ограничивают клетку.

Белки могут находиться на поверхности мембраны или быть интегрированными в неё.

В зависимости от вида белки осуществляют различные функции:

  • транспортную;
  • ферментативную;
  • рецепторную.

Рис. 1. Строение плазмалеммы.

Клетки растений сверху окружены жёсткой целлюлозной стенкой. У животных клеток поверхностный слой называется гликокаликсом, в состав которого входят углеводы, белки и жиры.

Органеллы

Структурно-функциональная организация растительной и животной клеток гомологична, т.е. похожа. Однако клетки отличаются специфичными органеллами.

Рис. 2. Строение клеток животных и растений.

Основные компоненты эукариотической клетки и их описание представлены в таблице.

Органоиды

Строение

Функции

Состоит из двух мембран, имеющих поры. Внутри находится вязкая нуклеоплазма, состоящая из нуклеиновых кислот, хроматина (содержит белки, ДНК, РНК), белков, воды

Контролирует все клеточные процессы. Хранит и передаёт наследственную информацию

Эндоплазматическая сеть (ЭПС)

Образована внешней ядерной мембраной. На поверхности могут находиться рибосомы (шероховатая ЭПС)

Синтезирует липиды и углеводы. Нейтрализует яды

Рибосома

Немембранная структура, состоящая из двух частей - субъединиц. В состав каждой части входит белок и рибосомальная РНК

Осуществляет все этапы биосинтеза белка - инициацию, элонгацию, терминацию

Комплекс (аппарат) Гольджи

Мембранная органелла, состоящая из стопок - цистерн, заполненных ферментами. Взаимосвязан с ЭПС

Модифицирует органические вещества, производит ферменты, гормоны, лизосомы

Лизосома

Одномембранная органелла, характерная для животных клеток. Заполнена ферментами. В растительных клетках встречается редко и в небольших количествах

Переваривает жидкие и твёрдые частицы, попадающие в клетку при метаболизме

Митохондрия

Состоит из двух мембран. Внешняя гладкая, внутренняя образует складки - кристы. Внутри заполнена вязким веществом - матриксом, в котором находятся белки и митохондриальная ДНК

Осуществляет синтез АТФ в ходе клеточного дыхания

Клеточный центр (центросома)

Характерен только для животной клетки. Состоит из двух белковых центриолей - материнской и дочерней

Материнская центриоль производит микротрубочки, образующие веретено деления

Пластиды

Специфичные органеллы растительной клетки. Бывают трёх видов. Заполнены гелеобразной белковой жидкостью - стромой, в которой находится собственная ДНК

Хлоропласты содержат хлорофилл и осуществляют фотосинтез;

Хромопласты содержат яркие пигменты, окрашивающие цветки и плоды;

Лейкопласты накапливают питательные вещества

Присутствует только в растениях. Образуется с помощью ЭПС и комплекса Гольджи. Состоит из тонкой мембраны, под которой находятся запасы питательных веществ, ферменты. Занимает 90 % всей клетки

Поддерживает тургор (внутреннее давление), водно-солевой баланс

Все органеллы располагаются в цитоплазме - вязком веществе, состоящем из жидкости - гиалоплазмы (цитозоли). Также в неё входят клеточные включения (капли жира, зёрна крахмала) и цитоскелет, состоящий из микротрубочек и осуществляющий клеточное движение. Благодаря движению происходит обмен веществ между органеллами и с внешней средой.

Деление

Основным способом деления эукариот является митоз. Это непрямое деление клетки, включающее две стадии:

  • кариокинез - распределение ядерного содержимого между двумя клетками;
  • цитокинез - разделение органелл между дочерними клетками.

Деление начинается с удвоения центросомы и распада ядерной мембраны. Из хроматина образуются хромосомы, которые выстраиваются на клеточном экваторе. Прикреплённые микротрубочки веретена деления оттягивают части хромосом в разные стороны, где вокруг них образуется новая ядерная оболочка. Затем распределяются органеллы.

Рис. 3. Митоз.

Клетки животных разделяются перетяжкой. У растительных клеток формируется перегородка.

Что мы узнали?

Кратко узнали из темы цитологии о строении и функциях эукариот. Ядерные клетки растений и животных схожи по строению, но имеют специфичные органеллы. В растительной клетке содержатся пластиды и вакуоль. Клетки растений сверху покрывает целлюлозная оболочка, а животных - гликокаликс. В отличие от растений клетки животных содержат центросомы, участвующие в делении.

Тест по теме

Оценка доклада

Средняя оценка: 4.2 . Всего получено оценок: 235.

Прочитаем информацию .

Клетка - сложная система, состоящая из трех структурно-функциональных подсистем поверхностного аппарата, цитоплазмы с органоидами и ядра.

Эукариоты (ядерные) - клетки, обладающие, в отличие от прокариот, оформленным клеточным ядром, ограниченным от цитоплазмы ядерной оболочкой.

К эукариотическим клеткам относят клетки животных, человека, растений и грибов.

Строение эукариотических клеток

Структура

Строение и состав

Функции структуры

Плазматическая мембрана

Представляет собой двойной слой липидных молекул - фосфолипидов, плотно расположенных друг к другу.

Состоит из липидов, белков и сложных углеводов.

1.защищает цитоплазму от физических и химических повреждений

2.избирательно регулирует обмен веществ между клеткой и внешней средой

3.обеспечивает контакт с соседними клетками

Двойная ядерная мембрана, окружающая кариоплазму (ядерный сок). Мембрана пронизана порами, через которые происходит обмен веществ между ядром и цитоплазмой

1.регулирует клеточную активность

2.содержит ДНК, хранящую информацию о специфической последовательности аминокислот в белке

3.мембрана ядра через ЭПС связана с наружной мембраной

Округлое тельце диаметром около 1 мкм

Происходит сборка рибосомных субъединиц, синтез рРНК

Цитоплазма

Органоиды: эндоплазматическая сеть, рибосомы, митохондрии, пластиды, комплекс Гольджи, лизосомы и др.

1.объединяет все компоненты клетки в единую систему

2.осуществляются все процессы клеточного метаболизма, кроме синтеза нуклеиновых кислот

3.принимает участие в передаче информации (цитоплазматическая наследственность)

4.участвует в переносе веществ и перемещении органоидов внутри клетки

5.участвует в передвижении клетки (амебовидное движение)

Хромосомы

Две хроматиды, соединенные в области центромеры. Состоят из ДНК и белка

Хранят и распределяют генетическую информацию

Митохондрии

Внешняя мембрана, наружная мембрана, внутренняя мембрана, из которой образуются складки (кристы). Внутри находятся РНК, ДНК, рибосомы

1.образуется энергия (синтез АТФ) в результате окислительных процессов

2. осуществляют аэробное дыхание

Рибосомы

Немембранные компоненты клетки. Состоят из двух субъединиц (большой и малой)

Сборка белковых молекул

Эндоплазматический ретикулум (ЭПС)

Система уплощенных, удлиненных, трубчатых и пузыреобразных элементов

Обеспечивает синтез углеводов, липидов, белков и их перемещение внутри клетки

Аппарат Гольджи

Три основных элемента: стопка уплощенных мешочков (цистерн), пузырьки и вакуоли

Модификация, накопление, сортировка продуктов синтеза и распада веществ

Лизосомы

Одномембранные структуры, внешне напоминающие пузырьки.

1.внутриклеточное переваривание макромолекул пищи

2.уничтожение старых клеток (аутолиз или )

Клеточная стенка

Животные клетки - отсутствует

Растительные - состоят из целлюлозы

1.опорная

2.защитная

Пластиды (хлоропласты, хромопласты, лейкопласты)

Мембранные органоиды, содержащие хлорофилл, ДНК

Существуют только в растительных клетках.

1.фотосинтез

2.запас питательных веществ

Растительные клетки - органоиды, ограниченные мембраной, содержащие клеточный сок.

2.запас необходимых веществ (особенно воды)

3.отложение вредных веществ

4.ферментативное расщепление органических соединений

Животные клетки имеют

пищеварительные вакуоли и автографические вакуоли.

Относятся к группе вторичных лизосом. Содержат гидролитические ферменты.

1.пищеварение

2.выделение

У одноклеточных животных есть сократительные вакуоли

1.осморегуляция

2.выделение

Микротрубочки и микрофиламенты

Белковые образования, цилиндрической формы

1.образование цитоскелета клетки, центриолей, базальных телец, жгутиков, ресничек

2.обеспечение внутриклеточного движения (митохондрий и др.)

Реснички, жгутики

Система микротрубочек, покрытых мембраной

1.перемещение клетки

2.формирование потоков жидкости у поверхности клеток

Клеточный центр

Немембранный органоид, в котором находятся центриоли - система микротрубочек

2.участвует в равномерном распределении генетического материала при клеточном делении

Функции эукариотических клеток

В одноклеточных организмах

В многоклеточных организмах

Осуществляют все функции, характерные для живых организмов:

  • обмен веществ
  • развитие
  • размножение

Способны к адаптации

Клетки различны (дифференцированы) по строению.

Определенные клетки выполняют определенные функции.

Специализированные клетки образуют эпителиальные, мышечные, нервные, соединительные ткани (в качестве примера см. инфо-урок - ).

Автолиз (аутолиз) - саморастворение живых клеток и тканей под действием их собственных гидролитических ферментов, разрушающих структурные молекулы. Происходит в организме при физиологических процессах: метаморфоз, автотомия, также после смерти.

Ксантофилл - растительный пигмент, придающий желтый и коричневый цвета частям растений (желтый цвет листьев, красный цвет моркови, помидор). Принадлежит к группе каротиноиды.

Каротиноиды - группа растительных пигментов - высокомолекулярные углеводороды. Накапливаются в хлоропластах и, главным образом, в хромопластах. К этой группе относят каротины и ксантофиллы; из последних наиболее распространены зеаксантин, капксантин, ксантин, ликопин, лютеин. Участвуют в процессе фотосинтеза, поглощая энергию синей части солнечного спектра; окрашивают цветки, плоды, семена, корнеплоды, а осенью - и листья.

Тургор тканей - внутреннее гидростатическое давление в живой клетке, вызывающее напряжение клеточной оболочки.

Митотическое веретено (веретено деления) - структура, возникающая в клетках эукариот в процессе деления ядра (митоз). Получила своё название за отдалённое сходство формы с веретеном.

Цитоскелет - клеточный каркас или скелет, находящийся в цитоплазме живой клетки. Он присутствует во всех клетках как у эукариот, так и у прокариот. Образован из микротрубочек и микрофиламентов. Осуществляет поддержание формы и движение клетки.

Фагоцитоз - процесс, при котором клетки крови и тканей (фагоциты) захватывают и переваривают возбудителей инфекционных заболеваний и отмершие клетки.

Фагоциты - общее название клеток: в крови - зернистые лейкоциты (гранулоциты), в тканях - макрофаги. Процесс открыт И.И.Мечниковым в 1882 г.

Фагоцитоз - одна из защитных реакций организма.

Пиноцитоз - 1. захват клеточной поверхностью жидкости с содержащимися в ней веществами. 2. процесс поглощения и внутриклеточного разрушения макромолекул. Один из основных механизмов проникновения в клетку высокомолекулярных соединений, в частности белков и углеводно-белковых комплексов.

Используемая литература:

1.Биология: полный справочник для подготовки к ЕГЭ. / Г.И.Лернер. - М.: АСТ: Астрель; Владимир; ВКТ, 2009

2.Биология: учеб. для учащихся 11 класса общеобразоват. Учреждений: Базовый уровень / Под ред. проф. И.Н.Пономаревой. - 2-е изд., перераб. - М.: Вентана-Граф, 2008.

3.Биология для поступающих в вузы. Интенсивный курс / Г.Л.Билич, В.А.Крыжановский. - М.: Издательство Оникс, 2006.

4.Общая биология: учеб. для 11 кл. общеобразоват. учреждений / В.Б.Захаров, С.Г.Сонин. - 2-е изд., стереотип. - М.: Дрофа, 2006.

5.Биология. Общая биология. 10-11 классы: учеб. для общеобразоват. учреждений: базовый уровень / Д.К.Беляев, П.М.Бородин, Н.Н.Воронцов и др. под ред. Д.К.Беляева, Г.М.Дымшица; Рос. акад. наук, Рос. акад. образования, изд-во «Просвещение». - 9-е изд. - М.: Просвещение, 2010.

6.Биология: учеб.-справ.пособие / А.Г.Лебедев. М.: АСТ: Астрель. 2009.

7.Биология. Полный курс общеобразовательной средней школы: учебное пособие для школьников и абитуриентов / М.А.Валовая, Н.А.Соколова, А.А. Каменский. - М.: Экзамен, 2002.

Используемые Интернет-ресурсы:

Википедия. Строение клетки


1. Основы клеточной теории

2. Общий план строения прокариотической клетки

3. Общий план строения эукариотической клетки

1. Основы клеточной теории

Впервые клетку обнаружил и описал Р. Гук (1665). В XIX в. в трудах Т. Шванна, М. Шлейдена были заложены основы клеточной теории строения организмов. Современную клеточную теорию можно выразить в следующих положениях: все организмы состоят из клеток; клетка является элементарной структурной, генетической и функциональной единицей живого. Развитие всех организмов начинается с одной клетки, поэтому она является элементарной единицей развития всех организмов. В многоклеточных организмах клетки специализируются на выполнении определенных функций.

В зависимости от структурной организации выделяют следующие формы жизни: доклеточные (вирусы) и клеточные. Среди клеточных форм исходя из особенностей организации клеточного наследственного материала выделяют про- и эукариотические клетки.

Вирусы – это организмы, имеющие очень малые размеры (от 20 до 3000 нм). Их жизнедеятельность может осуществляться только внутри клетки организма хозяина. Тело вируса образовано нуклеиновой кислотой (ДНК или РНК), которая содержится в белковой оболочке – капсиде, иногдакапсид покрыт мембраной.

2. Общий план строения прокариотической клетки

Основные компоненты прокариотической клетки : оболочка, цитоплазма. Оболочка состоит из плазмалеммы и поверхностных структур (клеточная стенка, капсула, слизистый чехол, жгутики, ворсинки).

Плазмалемма имеет толщину 7,5 нм и с наружной части образована слоем белковых молекул, под которым находятся два слоя молекул фосфолипидов, а далее располагается новый слой молекул белка. В плазмалемме имеютсяканалы, выстланные белковыми молекулами, через эти каналы осуществляется транспорт различных веществ, как в клетку, так и из нее.

Основной компонент клеточной стенки – муреин. В него могут быть встроены полисахариды, белки (антигенные свойства), липиды. Придает клетке форму, препятствует ее осмотическому набуханию и разрыву. Через поры легко проникают вода, ионы, мелкие молекулы.

Цитоплазма прокариотической клетки выполняет функцию внутренней среды клетки, в ней находятся рибосомы, мезосомы, включения и молекула ДНК.

Рибосомы – органоиды бобовидной формы, состоят из белка и РНК более мелкие (70S-рибосомы), чем у эукариот. Функция – синтез белка.

Мезосомы – система внутриклеточных мембран образующие складчатые впячивания, содержат ферменты дыхательной цепи (синтез АТФ).

Включения : липиды, гликоген, полифосфаты, белки, запасные питательные вещества

Молекула ДНК. Одна гаплоидная кольцевая двухцепочечная суперконденсированная молекула ДНК. Обеспечивает хранение, передачу генетической информации и регуляцию жизнедеятельности клетки.

3. Общий план строения эукариотической клетки

Типичная клетка эукариот состоит из трех составных частей – оболочки, цитоплазмы и ядра. Основу клеточной оболочки составляетплазмалемма (клеточная мембрана) иуглеводно-белковая поверхностная структура.

1. Плазмалемма эукариот отличается от прокариотической меньшим содержанием белков.

2. Углеводно-белковая поверхностная структура. Животные клетки имеют небольшую белковую прослойку (гликокаликс) . У растений поверхностная структура клетки –клеточная стенка состоит из целлюлозы (клетчатки).

Функции клеточной оболочки: поддерживает форму клетки и придает механическую прочность, защищает клетку, осуществляет узнавание молекулярных сигналов, регулирует обмен веществ между клеткой и средой, осуществляет межклеточное взаимодействие.

Цитоплазма состоит изгиалоплазмы (основное вещество цитоплазмы),органоидов и включений. В гиалоплазме содержатся 3 типа органоидов:

двумембранные (митохондрии, пластиды);

одномембранные (эндоплазматическая сеть (ЭПС), аппарат Гольджи, вакуоли, лизосомы);

немембранные (клеточный центр, микротрубочки, микрофиламенты, рибосомы, включения).

1. Гиалоплазма представляет собой коллоидный раствор органических и неорганических соединений. Гиалоплазма способна к перемещению внутри клетки – циклозу . Основные функции гиалоплазмы: среда для нахождения органоидов и включений, среда для протекания биохимических и физиологических процессов, объединяет все структуры клетки в единое целое.

2. Митохондрии («энергетические станции клеток»). Наружная мембрана гладкая, внутренняя имеютскладки – кристы. Между внешней и внутренними мембранами находится матрикс . В матриксе митохондрий содержатся молекулы ДНК, мелкие рибосомы и различные вещества.

3. Пластиды характерны для растительных клеток. Различают три вида пластид: хлоропласты, хромопласты и лейкопласты.

I. Хлоропласты – зеленые пластиды, в которых осуществляется фотосинтез. Хлоропласт имеет двухмембранную оболочку. Тело хлоропласта состоит из бесцветногобелково-липидного стромы, пронизанной системой плоских мешочков (тилакоидов) образованных внутренней мембраной.Тилакоиды образуютграны. В строме содержатся рибосомы, крахмальные зерна, молекулы ДНК.

II . Хромопласты придают разным органам растения окраску.

III . Лейкопласты запасают питательные вещества. Из лейкопластов возможно образование хромопластов и хлоропластов.

4. Эндоплазматическая сеть представляет собой разветвленную систему трубочек, каналов и полостей. Различаютнегранулярную (гладкую) и гранулярную (шероховатую) ЭПС. На негранулярной ЭПС находятся ферменты жирового и углеводного обмена (происходит синтез жиров и углеводов). Награнулярной ЭПС располагаются рибосомы, осуществляющие биосинтез белка. Функции ЭПС: механическая и формообразующая функции; транспортная; концентрация и выделение.

5. Аппарат Гольджи состоит из плоских мембранных мешочков и пузырьков. В животных клетках аппарат Гольджи выполняет секреторную функцию. В растительных он является центром синтеза полисахаридов.

6. Вакуоли заполнены клеточным соком растений. Функции вакуолей: запасание питательных веществ и воды, поддержаниетургорного давления в клетке.

7 . Лизосомы – мелкие органоиды сферической формы, образованы мембраной, внутри которой содержатся ферменты, гидролизующие белки, нуклеиновые кислоты, углеводы, жиры.

8. Клеточный центр. Функцией клеточного центра является управление процессом деления клеток.

9. Микротрубочки и микрофиламенты в совокупности формируют клеточный скелет животных клеток.

10. Рибосомы эукариот более крупные (80S).

11. Включения – запасные вещества, ивыделения – только в растительных клетках.

Ядро – важнейшая часть эукариотической клетки. Оно состоит из ядерной оболочки, кариоплазмы, ядрышек, хроматина.

1. Ядерная оболочка по строению аналогична клеточной мембране, содержит поры. Ядерная оболочка защищает генетический аппарат от воздействия веществ цитоплазмы. Осуществляет контроль за транспортом веществ.

2. Кариоплазма представляет собой коллоидный раствор, содержащий белки, углеводы, соли, другие органические и неорганические вещества. В кариоплазме содержатся все нуклеиновые кислоты: практически весь запас ДНК, информационные, транспортные и рибосомальные РНК.

3. Ядрышко – сферическое образование, содержит различные белки, нуклеопротеиды, липопротеиды, фосфопротеиды. Функция ядрышек – синтез зародышей рибосом.

4. Хроматин (хромосомы). В стационарном состоянии (время между делениями) ДНК равномерно распределены в кариоплазме в виде хроматина. При делении хроматин преобразуется в хромосомы.

Функции ядра: в ядре сосредоточена информация о наследственных признаках организма (информативная функция); хромосомы передают признаки организма от родителей к потомкам (функция наследования); ядро согласует и регулирует процессы в клетке (функция регуляции).

Прокариоты – древнейшие организмы, образующие самостоятельное царство. К прокариотам относятся бактерии, сине-зеленые «водоросли» и ряд других мелких групп.

Клетки прокариот не обладают, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Единственная крупная кольцевая (у некоторых видов – линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли). Также к ним можно условно отнести постоянные внутриклеточные симбионты эукариотических клеток – митохондрии и пластиды.

Эукариоты (эвкариоты) (от греч. eu– хорошо, полностью иkaryon– ядро) – организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочечных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикрепленных изнутри к мембране клеточного ядра и образующих у подавляющего большинства (кроме динофлагеллят) комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты-прокариоты – митохондрии, а у водорослей и растений – также и пластиды.

2. Клетки эукариот. Строение и функции

К эукариотам относятся растения, животные, грибы.

Клеточной стенки у клеток животных нет. Она представлена голым протопластом. Пограничный слой клетки животных – гликокаликс – это верхний слой цитоплазматической мембраны, «усиленный» молекулами полисахаридов, которые входят в состав межклеточного вещества.

Митохондрии имеют складчатые кристы.

В клетках животных есть клеточный центр, состоящий из двух центриолей. Это говорит о том, что любая клетка животных потенциально способна к делению.

Включение в животной клетке представлено в виде зерен и капель (белки, жиры, углевод гликоген), конечных продуктов обмена, кристаллов солей, пигментов.

В клетках животных могут быть сократительные, пищеварительные, выделительные вакуоли небольших размеров.

В клетках нет пластид, включений в виде крахмальных зерен, крупных вакуолей, заполненных соком.

3. Сопоставление прокариотической и эукариотической клеток

Наиболее важным отличием эукариот от прокариот долгое время считалось наличие оформленного ядра и мембранных органоидов. Однако к 1970 – 1980-м гг. стало ясно, что это лишь следствие более глубинных различий в организации цитоскелета. Некоторое время считалось, что цитоскелет свойственен только эукариотам, но в середине 1990-х гг. белки, гомологичные основным белкам цитоскелета эукариот, были обнаружены и у бактерий. (Таблица 16).

Именно наличие специфическим образом устроенного цитоскелета позволяет эукариотам создать систему подвижных внутренних мембранных органоидов. Кроме того, цитоскелет позволяет осуществлять эндо- и экзоцитоз (как предполагается, именно благодаря эндоцитозу в эукариотных клетках появились внутриклеточные симбионты, в том числе митохондрии и пластиды). Другая важнейшая функция цитоскелета эукариот – обеспечение деления ядра (митоз и мейоз) и тела (цитотомия) эукариотной клетки (деление прокариотических клеткок организовано проще). Различия в строении цитоскелета объясняют и другие отличия про- и эукариот. Например, постоянство и простоту форм прокариотических клеток и значительное разнообразие формы и способность к её изменению у эукариотических, а также относительно большие размеры последних.

Так, размеры прокариотических клеток составляют в среднем 0,5 – 5 мкм, размеры эукариотических – в среднем от 10 до 50 мкм. Кроме того, только среди эукариот попадаются поистине гигантские клетки, такие как массивные яйцеклетки акул или страусов (в птичьем яйце весь желток – это одна огромная яйцеклетка), нейроны крупных млекопитающих, отростки которых, укрепленные цитоскелетом, могут достигать десятков сантиметров в длину.

По своей структуре организмы могут одноклеточными и многоклеточными. Прокариоты преимущественно одноклеточны, за исключением некоторых цианобактерий и актиномицетов. Среди эукариот одноклеточное строение имеют простейшие, ряд грибов, некоторые водоросли. Все остальные формы многоклеточны. Считается, что одноклеточными были первые живые организмы Земли.

Эукариотические клетки от простейших организмов до клеток высших растений и млекопитающих, отличаются сложностью и разнообразием структуры. Типичной эукариотической клетки не существует, но из тысяч типов клеток можно выделить общие черты. Каждая эукариотическая клетка состоит из цитоплазмы и ядра.

Строение эукариотической клетки .

Плазмалемма (клеточная оболочка) животных клеток образована мембраной, покрытой снаружи слоем гликокаликса толщиной 10-20 нм. Плазмалемма выполняет отграничивающую, барьерную, транспортную и рецепторную функции. Благодаря свойству избирательной проницаемости плазмалемма регулирует химический состав внутренней среды клетки. В плазмалемме размещены молекулы рецепторов, которые избирательно распознают определенные биологически активные вещества (гормоны). В пластах и слоях соседние клетки удерживаются благодаря наличию разного вида контактов, которые представлены участками плазмалеммы, имеющими особое строение. Изнутри к мембране примыкает кортикальный (корковый) слой цитоплазмы толщиной 0,1-0,5 мкм.

Цитоплазма. В цитоплазме находится целый ряд оформленных структур, имеющих закономерные особенности строения и поведения в разные периоды жизнедеятельности клетки. Каждая из этих структур несёт определенную функцию. Отсюда возникло сопоставление их с органами целого организма, в связи с чем они получили название органеллы , или органоиды . В цитоплазме откладываются различные вещества - включения (гликоген, капли жира, пигменты). Цитоплазма пронизана мембранами эндоплазматической сети .

Эндоплазматическая сеть (ЭДС) . Эндоплазматическая сеть - это разветвлённая сеть каналов и полостей в цитоплазме клетки, образованная мембранами. На мембранах каналов находятся многочисленные ферменты, обеспечивающие жизнедеятельность клетки. Различают 2 вида мембран ЭДС - гладкие и шероховатые. На мембранах гладкой эндоплазматической сети находятся ферментные системы, участвующие в жировом и углеводном обмене. Основная функция шероховатой эндоплазматической сети - синтез белков, который осуществляется в рибосомах, прикрепленных к мембранам. Эндоплазматическая сеть - это общая внутриклеточная циркуляционная система, по каналам которой транспортируются вещества внутри клетки и из клетки в клетку.

Рибосомы осуществляют функцию синтеза белков. Рибосомы представляют собой сферические частицы диаметром 15-35нм, состоящие из 2 субъединиц неравных размеров и содержащие примерно равное количество белков и РНК . Рибосомы в цитоплазме располагаются или прикрепляются к наружной поверхности мембран эндоплазматической сети. В зависимости от типа синтезируемого белка рибосомы могут объединяться в комплексы - полирибосомы . Рибосомы присутствуют во всех типах клеток.

Комплекс Гольджи. Основным структурным элементом комплекса Гольджи является гладкая мембрана, которая образует пакеты уплощенных цистерн, или крупные вакуоли, или мелкие пузырьки. Цистерны комплекса Гольджи соединены с каналами эндоплазматической сети. Синтезированные на мембранах эндоплазматической сети белки, полисахариды, жиры транспортируются к комплексу, конденсируются внутри его структур и "упаковываются" в виде секрета, готового к выделению, либо используются в самой клетке в процессе её жизнедеятельности.

Митохондрии. Всеобщее распространение митохондрий в животном и растительном мире указывают на важную роль, которую митохондрии играют в клетке. Митохондрии имеют форму сферических, овальных и цилиндрических телец, могут быть нитевидной формы. Размеры митохондрий 0,2-1мкм в диаметре, до 5-7мкм в длину. Длина нитевидных форм достигает 15-20мкм. Количество митохондрий в клетках различных тканей неодинаково, их больше там, где интенсивны синтетические процессы (печень) или велики затраты энергии. Стенка митохондрий состоит из 2-х мембран - наружной и внутренней. Наружная мембрана гладкая, а от внутренней внутрь органоида отходят перегородки - гребни, или кристы. На мембранах крист находятся многочисленные ферменты, участвующие в энергетическом обмене. Основная функция митохондрий - синтез АТФ .

Лизосомы - небольшие овальные тельца диаметром около 0,4мкм, окруженные одной трехслойной мембраной. В лизосомах находится около 30 ферментов, способных расщеплять белки, нуклеиновые кислоты, полисахариды, липиды и др. вещества. Расщепление веществ с помощью ферментов называется лизисом , поэтому и органоид назван лизосомой . Полагают, что лизосомы образуются из структур комплекса Гольджи либо непосредственно из эндоплазматической сети. Функции лизосом : внутриклеточное переваривание пищевых веществ, разрушение структуры самой клетки при её отмирании в ходе эмбрионального развития, когда происходит замена зародышевых тканей на постоянные, и в ряде других случаев.

Центриоли. Клеточный центр состоит из 2-х очень маленьких телец цилиндрической формы, расположенных под прямым углом друг к другу. Эти тельца называются центриолями . Стенка центриоли состоит из 9-ти пар микротрубочек. Центриоли способны к самосборке и относятся к самовоспроизводящимся органоидам цитоплазмы. Центриоли играют важную роль в клеточном делении: от них начинается рост микротрубочек, образующих веретено деления.

Ядро. Ядро - важнейшая составная часть клетки. Оно содержит молекулы ДНК и поэтому выполняет две главные функции: 1) хранение и воспроизведение генетической информации, 2) регуляция процессов обмена веществ, протекающих в клетке. Клетка утратившая ядро , не может существовать. Ядро также неспособно к самостоятельному существованию. Большинство клеток имеет одно ядро, но можно наблюдать 2-3ядра в одной клетке, например в клетках печени. Известны многоядерные клетки с числом ядер в несколько десятков. Формы ядер зависят от формы клетки. Ядра бывают шаровидные, многолопастные. Ядро окружено оболочкой, состоящей из двух мембран, имеющих обычное трёхслойное строение. Наружная ядерная мембрана покрыта рибосомами, внутренняя мембрана гладкая. Главную роль в жизнедеятельности ядра играет обмен веществ между ядром и цитоплазмой. Содержимое ядра включает ядерный сок, или кариоплазму, хроматин и ядрышко. В состав ядерного сока входят различные белки, в том числе большинство ферментов ядра, свободные нуклеотиды, аминокислоты, продукты деятельности ядрышка и хроматина, перемещающиеся из ядра в цитоплазму. Хроматин содержит ДНК, белки и представляет собой спирализованные и уплотненные участки хромосом. Ядрышко представляет собой плотное округлое тельце, располагающееся в ядерном соке. Число ядрышек колеблется от 1 до 5-7 и более. Ядрышки есть только в неделящихся ядрах, во время митоза они исчезают, а после завершения деление образуются вновь. Ядрышко не является самостоятельным органоидом клетки, оно лишено мембраны и образуется вокруг участка хромосомы, в котором закодирована структура рРНК. В ядрышке формируются рибосомы, которые затем перемещаются в цитоплазму. Хроматином называют глыбки, гранулы и сетевидные структуры ядра, интенсивно окрашивающиеся некоторыми красителями и отличные по форме от ядрышка.





Copyright © 2024 Медицина и здоровье. Онкология. Питание для сердца.